• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Viruses discern, destroy E. coli in drinking water

Bioengineer by Bioengineer
September 27, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Sam Nugen/Cornell University

ITHACA, N.Y. – To rapidly detect the presence of E. coli in drinking water, Cornell University food scientists now can employ a bacteriophage – a genetically engineered virus – in a test used in hard-to-reach areas around the world.

Rather than sending water samples to laboratories and waiting days for results, this new test can be administered locally to obtain answers within hours, according to new research published by The Royal Society of Chemistry, August 2018.

"Drinking water contaminated with E. coli is a major public health concern," said Sam Nugen, Ph.D., Cornell associate professor of food science. "These phages can detect their host bacteria in sensitive situations, which means we can provide low-cost bacteria detection assays for field use – like food safety, animal health, bio-threat detection and medical diagnostics."

The bacteriophage T7NLC carries a gene for an enzyme NLuc luciferase, similar to the protein that gives fireflies radiance. The luciferase is fused to a carbohydrate (sugar) binder, so that when the bacteriophage finds the E. coli in water, an infection starts, and the fusion enzyme is made. When released, the enzyme sticks to cellulose fibers and begins to luminesce.

After the bacteriophage binds to the E. coli, the phage shoots its DNA into the bacteria. "That is the beginning of the end for the E. coli," said Nugen. The bacteriophage then lyses (breaks open) the bacterium, releasing the enzyme as well as additional phages to attack other E. coli.

Said Nugen: "This bacteriophage detects an indicator. If the test determines the presence of E. coli, then you should not be drinking the water, because it indicates possible fecal contamination."

First author Troy Hinkley, a Cornell doctoral candidate in the field of food science, is working as an intern with Intellectual Ventures/Global Good, a group that focuses on philanthropic, humanitarian scientific research, to further develop this bacteriophage.

Describing the importance of phage-based detection technology, Hinkley said, "Global Good invents and implements technologies to improve the lives of people in the developing world. Unfortunately, improper sanitation of drinking water leads to a large number of preventable diseases worldwide.

"Phage-based detection technologies have the potential to rapidly determine if a water source is safe to drink, a result that serves to immediately improve the quality of life of those in the community through the prevention of disease," he said.

###

The paper, "Reporter Bacteriophage T7NLC Utilizes a Novel NanoLuc::CBM Fusion for the Ultrasensitive Detection of Escherichia coli in Water," was also authored by Spencer Garing and Anne-Laure Le Ny, Kevin Nichols B.S., M. Eng, Intellectual Ventures /Global Good; Sangita Singh, Joey Talbert Ph.D., Iowa State University; and Joseph Peters, Cornell.

This research was supported by the U.S. Department of Agriculture and Global Good.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Media Contact

Lindsey Hadlock
[email protected]
607-269-6911
@cornell

http://pressoffice.cornell.edu

Original Source

http://news.cornell.edu/stories/2018/09/viruses-discern-destroy-e-coli-drinking-water http://dx.doi.org/10.1039/C8AN00781K

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.