• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Tumor cell expansion challenges current physics

Bioengineer by Bioengineer
September 25, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: X. Trepat/IBEC

A malignant tumor is characterized by its ability to spread around its surroundings. To do so, tumor cells stick to the surrounding tissue (mainly collagen) and use forces to propel. The journal Nature Physics published today a study by a team led by Xavier Trepat, ICREA researcher at the Institute for Bioengineering of Catalonia (IBEC) and lecturer at the Department of Biomedicine University of Barcelona (UB), and Jaume Casademunt, professor of Physics at the UB, reveals the forces these tumor cells use to spread. The relation between these forces and the cell movement goes beyond current physical laws.

Researchers put breast tumor cells on a surface rich in collagen and observed how these expanded. Thanks to the technology Trepat's group developed, these allowed them measuring the physical forces that were used by these cells during the process, which has not been observed so far. With these methods, they saw the tumor spreading depends on a competition between forces: cells stick to each other and are kept together, and at the same time, they adhere to the environment in order to escape. Depending on the predominant force, the tumor will keep its spherical shape or it will totally spread around the surface. "It is a similar process to the one when we place drop of water on a surface. In some surfaces, the drop will totally spread, for example on a brick, while when put on other surfaces, the drop will remain spherical, for example on an umbrella waterproof fabric", says Carlos Pérez, IBEC researcher, intern at 'la Caixa' and first author of the article.

Despite the similarities between tumors and liquids, the physics in these two phenomena is very different. "Wetting in surfaces is a core problem in classical physics we understand, but tumors seem to follow very different laws", notes Ricard Alert, UB researcher, intern at 'la Caixa' and co-author of the article. Unlike passive fluids, cells can create forces and move on their own. This turns biological tissues into active fluids, and in particular, tumors into active drops. Therefore, understanding tumor expansion on a surface requires developing a new physical theory that researchers have named "active wetting".

"When we think about state of matter, we usually think about solids, liquids or gases. Our results and other laboratory results point out that living cells do not fit into this scheme and behave like another state of matter, which we call active matter", says Jaume Casademunt. When a tumor appears, cells accumulate mutations and their mechanical properties change. In general, tumor cells lose union between them and gain union with their environment. During tumor growth, the own environment changes too, increasing its amount of collagen and rigidity. "Our experiments show that these changes are enough to put the balance of forces out of order, causing cells to start spreading around", says Xavier Trepat.

These findings show the importance of physical forces in metastasis, opening the window to the development of therapies to alter the mechanics of tumors as a potential treatment.

###

Media Contact

Bibiana Bonmatí
[email protected]
34-934-035-544

http://www.ub.edu

Original Source

https://www.ub.edu/web/ub/en/menu_eines/noticies/2018/09/029.html http://dx.doi.org/10.1038/s41567-018-0279-5

Share12Tweet7Share2ShareShareShare1

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.