• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Developing a quick-acting foam for treating wounds on the battlefield

Bioengineer by Bioengineer
September 25, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HERSHEY, Pa. — Every second counts for those with life-threatening injuries, especially when help is far away. A new grant will help Penn State researchers develop an innovative foam that helps seal wounds quickly — whether on the battlefield, in rural areas or in other isolated locations far from hospitals.

The three-year, $1.4 million grant from the U.S. Army Medical Research and Development Command will support the development and testing of the foam, which will expand and turn into a gel when applied to a wound. The pressure from the expanding gel, along with the inclusion of a blood-clotting agent called chitosan, will help stop the bleeding.

Dr. Scott Armen, professor of surgery and neurosurgery at Penn State College of Medicine, said that once developed, the foam could be used by first responders and medics all over the world to help stabilize patients with severe wounds until they can be transported to a hospital.

"The idea is that this foam could be placed in wounds from many different kinds of trauma, whether civilian or on the battlefield," said Armen, who is also a colonel in the U.S. Army Reserve and principal investigator on the project. "We could apply the foam in the field or at the scene, which would stop bleeding quickly, thereby enabling patients to survive prolonged transfer to hospitals or higher levels of care for definitive treatment."

Dr. Jeffrey Catchmark, professor of agricultural and biological engineering, will help develop the foam, which he said will also be bioabsorbable.

"After the foam is applied and as the wound heals, natural enzymes in the body will slowly convert the foam into sugar, which will then be metabolized by the body," Catchmark said.

"The structure of the foam will also allow it to slowly transition into an insoluble gel," added Catchmark. "This is an advantage because it allows the wound to heal without being damaged by the foam, and if the foam needs to be removed, it will not injure the wound site like conventional gauze bandages."

Dr. Melissa Linskey, resident surgeon at Penn State Health Milton S. Hershey Medical Center, will help Armen develop and plan the experiments to test the foam as she continues her training to become a trauma surgeon.

"We're hoping the foam will be a valuable alternative or even a better replacement to similar products that are currently available," Linskey said. "The wide applicability of the product is exciting, and we're hoping it will particularly benefit our service men and women on the front lines."

After the foam is developed and tested, the researchers also plan to evaluate its ease of use by first responders and look into developing weather- and fluid-resistant packaging to keep the foam dry while not in use.

###

Media Contact

Katie Bohn
[email protected]
@penn_state

http://live.psu.edu

Share14Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.