• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Photosynthesis discovery could help next-gen biotechnologies

Bioengineer by Bioengineer
September 24, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from The University of Queensland (UQ) and the University of Münster (WWU) have purified and visualized the 'Cyclic Electron Flow' (CEF) supercomplex, a critical part of the photosynthetic machinery in all plants, in a discovery that could help guide the development of next-generation solar biotechnologies.

The findings, made in collaboration with an international team of scientists from the Universities of Basel, Okayama and New South Wales, have been published in the Proceedings of the National Academies of Sciences and provide new insights into the process of photosynthesis at the molecular level.

"By the year 2050, we will need 50% more fuel, 70% more food, and 50% more clean water. Technologies based on photosynthetic microalgae have the potential to play an important role in meeting these needs," says Professor Ben Hankamer who is based at UQ's Institute for Molecular Bioscience and directs the Centre for Solar Biotechnology. Solar powered microalgae-based biotechnologies will be advanced through a better understanding of how these organisms capture and store solar energy at the molecular level.

Over three billion years, plants, algae, and blue-green bacteria have evolved elaborate nano-machinery that enables them to perform photosynthesis, in which solar energy is captured and stored in the form of chemical energy.

This chemical energy takes the form of the molecules ATP and NADPH, which are essential for a vast number of cellular processes.

"ATP and NADPH enable photosynthetic organisms to grow, and as they grow, they produce atmospheric oxygen as well as foods and fuels that support life on Earth," says Professor Hippler, based at WWU´s Institute for Plant Biology and Biotechnology.

Photosynthesis runs in two modes: linear electron flow (LEF) and cyclic electron flow (CEF). To work efficiently under constantly changing light conditions, a photosynthetic organism must balance the light that it absorbs with the energy, ATP and NADPH that it needs. It does this by continuously fine-tuning the levels of these two modes in relation to one another.

"Biochemical evidence had been reported that a large macromolecular assembly called the cyclic electron flow (CEF) supercomplex plays a critical role in this fine-tuning process. However, due to its dynamic nature it was difficult to purify this supercomplex for structure determination," says Professor Hankamer.

To address this, the team used sophisticated methods to purify and characterise the CEF supercomplex from micro-algae, and then analysed its structure using electron microscopy.

The researchers painstakingly imaged about half a million protein complexes extracted from microalgae in search for the supercomplex. Only about one thousand of these turned out to be the CEF supercomplex.

Structural analysis revealed how the light harvesting complexes, photosystem I and cytochrome b6f components assemble into the CEF supercomplex and how their arrangement enables them to dynamically connect and disconnect to perform different functions that allow the organism to adapt to varying light conditions and energy requirements.

This information, coupled with additional experimental evidence, enabled the researchers to propose a new hypothesis for how the CEF supercomplex works.

"The CEF supercomplex is an excellent example of an evolutionarily highly conserved structure," says Prof Hippler, explaining that it appears to be conserved across many plants and algae and likely hasn't changed significantly in millions of years.

"The work is central to the efforts of the Centre for Solar Biotechnology to develop next generation solar biotechnologies and industries," Prof. Hankamer explains.

The Centre has expanded to include 30 international teams across Europe, Asia, the US, Australia and New Zealand, and is dedicated to developing next generation solar driven biotechnologies based on photosynthetic green algae.

The team aims to optimize green-algae's photosynthetic machinery to produce technologies that help address the world's growing energy, food and water needs, says Professor Hankamer. Summaries of the Centre's programs can be found at https://imb.uq.edu.au/solar#qt-qt_centre_solar-foundation-tabs-1.

"To achieve these aims, we need to understand how the photosynthetic processes work at the molecular level," he says.

This new information will help guide the design of next generation solar capture technologies based on micro-algae and a wide range of solar driven biotechnologies and industries for the production of high value products, food, fuel and clean water. The extraction of CO2 from the atmosphere and its utilisation and storage are also exciting areas as the international community develops solutions to combat climate change.

###

Media Contact

Ben Hankamer
[email protected]
@uq_news

http://www.uq.edu.au

Share12Tweet8Share2ShareShareShare2

Related Posts

Broad-Range Phages Thrive Across Diverse Ecosystems

Broad-Range Phages Thrive Across Diverse Ecosystems

September 19, 2025
AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

September 19, 2025

Collaboration with Kenya’s Turkana Community Uncovers Genes Behind Desert Adaptation

September 18, 2025

Cracking the Code of the Selfish Gene: From Evolutionary Cheaters to Breakthroughs in Disease Control

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Nanoparticle System Boosts Cancer Treatment Efficacy

Risk-Based Approaches to Kidney Health in Diabetes

Day-2 Heart Imaging and Biomarkers in HIE Neonates

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.