• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Parasite makes quick exit when researchers remove the handbrake

Bioengineer by Bioengineer
September 24, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Walter and Eliza Hall Institute, Australia

Melbourne researchers have discovered a way to halt the invasion of the toxoplasmosis-causing parasite into cells, depriving the parasite of a key factor necessary for its growth.

The findings are a key step in getting closer to a vaccine to protect pregnant women from the parasite Toxoplasma gondii, which carries a serious risk of miscarriage or birth defects. The parasite is common in Australia, being carried by 30 per cent of the Australian population, and is transmitted by cat faeces and can also be acquired from raw meat. Toxoplasma infection may also have a link to neurological disorders such as schizophrenia.

The research, published today in the journal PLOS Biology, was led by Associate Professor Chris Tonkin, Dr Alex Uboldi and Ms Mary-Louise Wilde from the Walter and Eliza Hall Institute.

At a glance

  • The parasite Toxoplasma gondii is carried by 30 per cent of the Australian population, and is a significant cause of miscarriage and birth defects.
  • Walter and Eliza Hall Institute researchers have discovered that a factor called protein kinase A (PKA) is required for Toxoplasma gondii to invade a host cell.
  • The finding could lead to a vaccine or treatment for Toxoplasmosis, and sheds light on more general processes involved in other diseases caused by related parasites such as malaria.
  • The breakthrough was possible through use of high-quality imaging facilities at the Institute's Centre for Dynamic Imaging.

Cut the brakes

There are two important steps allowing Toxoplasma gondii to take hold within our body: the parasite needs to enter a host cell, and from there it replicates and spreads.

"After Toxoplasma infects humans it needs to switch off the infection machinery and switch on replication," Associate Professor Tonkin said. 'Without the ability to do this, Toxoplasma will die and be unable to cause disease. We discovered that the gene protein kinase A (PKA) is required for this switch. Without PKA, Toxoplasma can't hold steady."

Importance of new technology

According to Dr Uboldi, the discovery was made using advanced microscopy technology available at the Institute's Centre for Dynamic Imaging.

"It wasn't until we observed the parasite down the microscope and studied its behaviour that we noticed something unexpected," Dr Uboldi said.

"This was fully dependent on our access to the sophisticated equipment at the Institute's Centre for Dynamic Imaging.

"By actually watching the process take place in real time, we had that rare Eureka moment."

Wide-ranging implications

Ms Wilde, a PhD student at the Institute, noted that Toxoplasma gondii is closely related to parasites that cause a range of globally significant diseases, such as malaria.

"Central to all these parasites is that they need to invade host cells in order to survive," Ms Wilde said.

"Understanding the role that PKA plays in the Toxoplasma lifecycle could provide insights into the biology of other disease-causing parasites, such as Plasmodium, which causes malaria.

"PKA belongs to a class of molecules that are a really important drug target for other diseases such as cancer and diabetes. We now might be able to take our understanding of how PKA functions in these diseases to design new therapies for toxoplasmosis and infections caused by related parasites," she said.

###

The research findings were supported by the National Health and Medical Research Council and an Australian Research Council fellowship.

Media Contact

Vanessa Solomon
[email protected]
61-475-751-811
@WEHI_research

Home

Original Source

https://www.wehi.edu.au/news/parasite-makes-quick-exit-when-researchers-remove-handbrake http://dx.doi.org/10.1371/journal.pbio.2005642

Share12Tweet7Share2ShareShareShare1

Related Posts

Broad-Range Phages Thrive Across Diverse Ecosystems

Broad-Range Phages Thrive Across Diverse Ecosystems

September 19, 2025
AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

September 19, 2025

Collaboration with Kenya’s Turkana Community Uncovers Genes Behind Desert Adaptation

September 18, 2025

Cracking the Code of the Selfish Gene: From Evolutionary Cheaters to Breakthroughs in Disease Control

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Nanoparticle System Boosts Cancer Treatment Efficacy

Risk-Based Approaches to Kidney Health in Diabetes

Day-2 Heart Imaging and Biomarkers in HIE Neonates

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.