• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Case Western Reserve’s Dr. Lan Zhou receives $2M to study colorectal cancer development

Bioengineer by Bioengineer
September 14, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Lan Zhou, MD, PhD, associate professor of pathology at Case Western Reserve University School of Medicine, has received a five-year, $2 million grant from the National Cancer Institute of the National Institutes of Health to study human colorectal cancer. Her work focuses on the effect of the imbalance of the gut microbiome, the immune response, and genetics in the development of adenocarcinoma (cancer that forms in the lining of the glands) through the serrated pathway.

The "serrated pathway" is a molecular pathway postulated for a subset of colorectal cancers that develop from certain serrated adenomas/polyps–growths that have a saw-tooth appearance when viewed under the microscope. It is distinct from the conventional adenoma-carcinoma (cancer) pathway, which involves "flat" growths. As many as 15 percent of all colorectal cancers start from serrated adenoma polyps with dysplasia (cells that look distinctively abnormal under the microscope). Serrated lesions are also found in patients with irritable bowel disease and colitis, often contributing to colon cancer development in that population. Serrated cancer lesions are not well described, do not respond well to chemotherapy compared to other tumors, and are associated with worse prognoses.

"Colon cancer can start from different adenomas and have different mechanisms, which is why it is imperative to recognize these variations and apply specific preventive treatment," said Zhou, who is also a Case Comprehensive Cancer Center member.

Under the grant, Zhou and her collaborating team will use a combination of approaches in mouse models and human tissue to study the carcinogenic transformation of colon epithelium (tissue that lines bodily organs) characterized by the loss of HES1, an important signaling molecule that regulates cell homeostasis and the differentiation of stem cells into specialized cells. This process, known as Notch signaling, is crucial for maintaining the balance between cell proliferation, differentiation, and normal cell death.

Zhou's findings from mouse models strongly support an inflammation- and dysplasia-suppressive function of epithelial Notch/HES1 signaling. But malfunctions may lead to the development and/or progression of colorectal cancer. The investigators aim to determine how this transformation occurs and how it is enhanced by pro-inflammatory activity in the body. Inflammation is a known risk factor for developing many diseases, including colorectal cancer.

The approaches they will draw on include the use of organoid culture (3D mouse cell aggregates that function like organs); network bioinformatics analysis; assessment of microorganisms such as bacteria by deep gene-sequencing (sequencing a genomic area up to thousands of times to profile the microbial community).

Zhou previously reported that expression of HES1 is lost in 92 percent of serrated pre-cancer lesions (as well as being a prominent feature of irritable bowel disease-associated serrated lesions), whereas its expression in normal colon tissue and in benign polyps remains intact. "Our hypothesis is that HES1-loss disrupts epithelial homeostasis and causes increased inflammation that promotes transformation of serrated adenocarcinoma," said Zhou. The research team will aim to describe how this process operates both singularly and in interaction with interleukin-1 beta, a protein that initiates and propagates inflammation. Blocking it may prevent or suppress tumor development and progression.

"At the end of this study, we will gain a deeper and broader understanding of the mechanism by which epithelial HES1-loss disrupts epithelial homeostasis and orchestrates a pro-inflammatory and pro-carcinogenic microenvironment," said Zhou. "We hope our findings will result in more effective and targeted preventive treatments for a subset of colorectal cancer."

Among cancers affecting both men and women, colorectal cancer is the second leading cause of cancer-related deaths in the United States. It is the third most common cancer in both men and women. Worldwide rates for colorectal cancer are similar. Surgery, combined with chemotherapy, is the conventional treatment, although resistance to chemotherapy is common in advanced cases.

"The high death rate of advanced colorectal cancer is attributable to limited treatment options," added Zhou. "In the search for better therapeutic options, malfunctioning Notch/HES1 signaling has emerged as a potential target and a potential source of hope for a subgroup of patients with this terrible disease."

###

For more information about Case Western Reserve University School of Medicine, please visit: case.edu/medicine.

Media Contact

Ansley Gogol
[email protected]
216-368-4452
@cwru

http://www.case.edu

http://casemed.case.edu/cwrumed360/news-releases/release.cfm?news_id=1454&news_category=8

Share14Tweet8Share2ShareShareShare2

Related Posts

Targeting Lipid Metabolism to Enhance Antitumor Immunity

September 19, 2025

Uncovering Gaps in Rehab for Hospitalized Patients

September 19, 2025

Collaborating on European Data Science for Seniors

September 19, 2025

Intraoperative Ventilation Approaches for Thoracic Surgery

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeting Lipid Metabolism to Enhance Antitumor Immunity

Triple Wavefront Modulation Enables Advanced Multi-Depth XR Vision

Uncovering Gaps in Rehab for Hospitalized Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.