• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New genetics tool helps answer evolutionary questions

Bioengineer by Bioengineer
September 13, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo by Derrick Turner

EAST LANSING, Mich. – The age of big data is here. Thanks to innovations in genetic sequencing technology, scientists can now generate massive datasets describing the genomes of Earth's diverse set of species. This ever-growing genomic encyclopedia has the capacity to reveal the forces shaping complex patterns of genetic variation between individuals, populations and species – if scientists can only unlock its secrets.

Developing cutting-edge statistical tools that can handle these massive new datasets is a piece of the research puzzle, and new research from Michigan State University has just added a new tool for the modern genomic toolbox.

The method, called "conStruct" and featured in the current issue of Genetics, allows researchers to analyze complex patterns of genetic variation in large datasets with broad geographic sampling. It overcomes major shortcomings of previous methods and is free and publicly available worldwide.

"One of the first steps in the analysis of these genomic datasets is to describe and categorize variation into discrete populations, like you might find in range maps in a field guide," said Gideon Bradburd, MSU population geneticist and lead author. "What often determines relatedness is geography. If you sample two organisms separated by a large distance, you often have to go farther back into the history of their pedigrees to find a shared ancestor."

This leads to isolation by distance, a pattern that creates statistical challenges for anyone interested in cleanly describing variation within and between groups in their own study system, he added.

In the paper, Bradburd and his colleagues illustrate the utility of their new approach by applying it to genomic data collected on North American bears and poplar trees. For a better understanding, let's look at the poplars, which are distributed throughout the northern hemisphere. Different species of poplar can be found near each other, and, where they overlap, they frequently hybridize.

Using conStruct, the research team was able to review the degree to which hybridization between the two poplar species has happened. They were also able to determine whether the only significant population boundary fell along the species boundary, and if there was substructuring within the species.

"Understanding the genetic relatedness of individuals is central to many important research fields, including conservation biology, human medicine, evolution and ecology, and agriculture," Bradburd said. "With conStruct, scientists can home in on commonalities and discrepancies among populations with more accuracy. This can prove invaluable, especially in conservation efforts."

And, of course, these genomic patterns will offer additional insights into human evolution.

For the next phase of this research, Bradburd's team will attempt to take conStruct into the fourth dimension. They hope to add the ability to model historical or ancient DNA samples to learn how and why populations change – or are replaced by their neighbors – through time.

###

This research was funded in part by the National Science Foundation and the National Institutes of Health. Scientists from the University of California-Davis and University of Oregon contributed to this research.

Michigan State University has been working to advance the common good in uncommon ways for 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Media Contact

Layne Cameron
[email protected]
517-353-8819
@MSUnews

http://msutoday.msu.edu/journalists/

Original Source

http://go.msu.edu/MxH

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.