• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, February 9, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Caspase-2 enzyme inhibitor shows promise for ameliorating fatty liver disease

Bioengineer by Bioengineer
September 13, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UC San Diego Health

Researchers at University of California San Diego School of Medicine have discovered using mice and human clinical specimens, that caspase-2, a protein-cleaving enzyme, is a critical driver of non-alcoholic steatohepatitis (NASH), a chronic and aggressive liver condition. By identifying caspase-2's critical role, they believe an inhibitor of this enzyme could provide an effective way to stop the pathogenic progression that leads to NASH — and possibly even reverse early symptoms.

The findings are published in the September 13 online issue of Cell.

"Our results show that caspase-2 is a critical mediator of NASH pathogenesis, not only in mice but probably in humans as well," said Michael Karin, PhD, Distinguished Professor of Pharmacology at UC San Diego School of Medicine. "While explaining how NASH is initiated, our findings also offer a simple and effective way to treat or prevent this devastating disease."

NASH is the most aggressive form of non-alcoholic fatty liver disease (NAFLD), which includes a spectrum of chronic liver diseases and has become a leading cause of liver transplants. The cause of both NAFLD and NASH remains a mystery, but researchers believe one factor that accelerates the progression of benign NAFLD to aggressive NASH is elevated endoplasmic reticulum (ER) stress, induced by protein misfolding within the liver. This results in excessive buildup of cholesterol and triglycerides in liver tissue.

Applying this premise in mice, researchers first identified molecules involved in NASH pathogenesis by combining liver-specific ER stress and a high-fat diet to elicit NASH like disease, duplicating the cardinal features of human NASH, including fat accumulation in liver cells, liver damage, inflammation and scarring. Using this model, researchers found that the onset of NASH correlated with increased expression of caspase-2.

In the next phase, Karin and team examined human liver specimens collected from patients with benign NAFLD or aggressive NASH to confirm caspase-2 expression was also elevated in humans. By knocking out the caspase-2 gene in mice subjected to liver ER stress and high-fat diet or treating the mice with a specific caspase-2 inhibitor, they found that caspase-2 was responsible for all aspects of NASH, including lipid droplet accumulation, liver damage, inflammation and scarring.

"We now know that by preventing caspase-2 expression or inhibiting its activity that biomarkers of NASH are mitigated," said Juyoun Kim, PhD, senior fellow in the Karin laboratory and lead author. "This is exciting because now, we not only understand the role of caspase-2 in the disease, but also have a new avenue to find a potential drug treatment."

Through this study, Karin and team also discovered that caspase-2 has a critical role in activating SREBP1 and 2 — the master regulators of lipogenesis, a process that takes place in the liver where nutrients like carbohydrates are turned into fatty acids, triglycerides and cholesterol. Caspase-2 was found to control SREBP1 and 2 activation by cleaving another protein called site-1 protease.

"In NASH-free individuals, the activities of SREBP1 and SREBP2 are kept under control, which is essential for preventing excessive lipid accumulation in the liver," said Karin. "However, in NASH patients, something goes awry and the liver continues to turn out excess amounts of triglycerides and cholesterol. This correlates with elevated SREBP1 and SREBP2 activities and increased caspase-2 expression."

Moving forward, Karin and team would like to embark on development of more effective drug-like caspase-2 inhibitors that could be used for NASH prevention, and ultimately provide a treatment option.

"This study was a great step forward in being able to understand the causes, and explore possible new treatments for patients with NASH and NAFLD," said co-author Rohit Loomba, MD, director of the UC San Diego NAFLD Research Center and director of hepatology at UC San Diego School of Medicine. "It is our hope to eventually translate and validate these study results using a much larger cohort of human subjects."

"This study was a great step forward in being able to understand the causes, and explore possible new treatments for patients with NASH and NAFLD," said co-author Rohit Loomba, MD, director of the UC San Diego NAFLD Research Center and director of hepatology at UC San Diego School of Medicine. "It is our hope to eventually translate and validate these study results using a much larger cohort of human subjects."

###

Co-authors include: Ricard Garcia-Carbonell, Shinichiro Yamachika, Peng Zhao, Debanjan Dhar and Alan R. Saltiel, all UC San Diego; and Randal J. Kaufman, Sanford-Burnham-Prebys Medical Discovery Institute.

Media Contact

Gabrielle Johnston, MPH
[email protected]
858-249-0456
@UCSanDiego

http://www.ucsd.edu

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2018.08.020

Share14Tweet7Share2ShareShareShare1

Related Posts

Intensive Short-Duration Exercise Outperforms Standard Care in Treating Panic Disorder

Intensive Short-Duration Exercise Outperforms Standard Care in Treating Panic Disorder

February 9, 2026

Exercise’s Impact on SASP Biomarkers in Seniors Unexplored

February 9, 2026

UK’s Rising Synthetic Opioid Crisis: Nitazene-Linked Deaths May Be Underreported by Up to 33%

February 9, 2026

Evaluating Digital Diabetes Screening’s B2C Potential in Switzerland

February 8, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Intensive Short-Duration Exercise Outperforms Standard Care in Treating Panic Disorder

Exercise’s Impact on SASP Biomarkers in Seniors Unexplored

UK’s Rising Synthetic Opioid Crisis: Nitazene-Linked Deaths May Be Underreported by Up to 33%

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.