• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, February 9, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Shedding light on 100-year-old cancer mystery

Bioengineer by Bioengineer
September 12, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Sanford Burnham Prebys Medical Discovery Institute (SBP)

LA JOLLA, CALIF. – Sept. 12, 2018 – For almost a century, scientists have observed a strange behavior in cancer cells: They prefer a less-efficient pathway to produce energy. While normal cells utilize aerobic glycolysis to use glucose to produce 36 energy-storing adenosine triphosphate (ATP) molecules, most cancer cells, despite the presence of oxygen, switch to anaerobic glycolysis, which only produces two ATPs.

Known as the Warburg effect, this process relies on a class of enzymes known as lactate dehydrogenase, with lactate deyhydrogenase A (LDHA) being the most prominent player. Inhibiting LDHA could stop cancer cells from generating the energy they need to grow and survive, but little is known about how effective LDHA inhibition could be, largely due to the lack of pharmacological inhibitors that work in vivo.

Using genetic and pharmacological means, scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) were surprised to find that blocking LDHA had only a limited impact on melanoma cells, since they were able to redirect energy production. Their results identify an alternative growth pathway driven by a molecule called ATF4, revealing new potential targets for drug development. The study was published today in EMBO Journal.

"We set out to examine what actually happens to melanoma cells when LDHA is inhibited," says Gaurav Pathria, Ph.D., the first author of the paper and a senior postdoctoral associate in the laboratory of Ze'ev Ronai, Ph.D., a professor in its NCI-designated Cancer Center. "Our research identifies the ATF4-signaling pathway as one that prompts melanoma cells to gather essential amino acids needed to sustain tumor growth and survival in response to LDHA inhibition. We believe that targeting this pathway in combination with a LDHA-targeting drug may provide a promising treatment for melanoma."

Each year more than 9,000 Americans die of melanoma, a type of skin cancer. In the last decade, personalized treatments that target altered BRAF and MEK proteins–changes found in more than half of people with melanoma–have extended patient survival by months and even years. But cancer cells can adapt to therapy and outsmart these drugs, sending patients back into a state of illness after apparent recovery.

"Over the course of my career, melanoma has gone from a poorly treatable disease to a potentially beatable cancer, although in many cases, only for a limited time. Thus, our work isn't done," says Ronai, senior author of the paper. "Patients are quickly developing resistance to these medicines–in as little as a few months after starting treatment–creating a need for new and better targets and therapeutic modalities."

From ATP to amino acids

Several changes were seen in melanoma cells when LDHA was blocked. These cells switched from ATP-generating aerobic glycolysis to "eating" glutamine–an amino acid. The authors found that ATF4 drove this process, calling for more amino acids to be taken up by the cell. The increase in amino acids activated the master growth regulator, mTORC1, allowing cancer cells to keep growing. Blocking both LDHA and mTORC1 halted cell growth, indicating the therapeutic potential of targeting this pathway. In mapping the alternative route identified upon LDHA inhibition, the investigators point to additional targets that can be exploited, including glutamine metabolism and MAPK signaling, for which pharmacological inhibitors do exist.

"When we looked at tumor samples from patients with drug-resistant melanoma, we found strikingly similar results," says Ronai. "ATF4-related metabolic signaling increased in the patient samples, indicating the cancer cells used the same ATF4-driven survival pathway to continue growing."

Adds Pathria, "This study also sheds light on the Warburg effect–the nearly 100-year-old mystery of why cancer cells prefer an inefficient pathway to fuel their growth. Our results indicate cancer cells crave amino acids, versus ATP. Perhaps these rapidly growing cells find the seemingly wasteful Warburg effect more efficient to gather protein building blocks–amino acids.

"These findings pave the way toward a better understanding of how restricting access to amino acids affects cancer cells at a molecular level," Ronai explains. "Results from this research could help uncover more cancer cell vulnerabilities and potential treatment targets."

###

Co-authors of the study include: David A. Scott, Yongmei Feng, Yu Fujita and Andrei L. Osterman, SBP; Joo Sang Lee and Eytan Ruppin, National Institutes of Health (NIH); Gao Zhang and Meenhard Herlyn, The Wistar Institute; and Avinash D. Sahu, Harvard School of Public Health and Massachusetts General Hospital.

Research reported in this press release was supported by NIH grants R35CA197465, P01CA128814, P01CA114046 and P30CA030199. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Additional support was received from the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation and the Hervey family.

About Sanford Burnham Prebys Medical Discovery Institute

Sanford Burnham Prebys Medical Discovery Institute (SBP) is an independent nonprofit medical research organization that conducts world-class, collaborative, biological research and translates its discoveries for the benefit of patients. SBP focuses its research on cancer, immunity, neurodegeneration, metabolic disorders and rare children's diseases. The Institute invests in talent, technology and partnerships to accelerate the translation of laboratory discoveries that will have the greatest impact on patients. Recognized for its NCI-designated Cancer Center and the Conrad Prebys Center for Chemical Genomics, SBP employs nearly 900 scientists and staff in San Diego (La Jolla), Calif., and Orlando (Lake Nona), Fla. For more information, visit us at SBPdiscovery.org or on Facebook at facebook.com/SBPdiscovery and on Twitter @SBPdiscovery.

Media Contact

Susan Gammon
[email protected]
858-795-5012
@sbpdiscovery

http://www.sbpdiscovery.org/

Share14Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Private Sector Cuts Greenhouse Gases in Africa’s Livestock

Triple Targeting Enhances CXCL16–CXCR6 Antitumor Response

Intensive Short-Duration Exercise Outperforms Standard Care in Treating Panic Disorder

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.