• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New insight on rotavirus mechanics could lead to improved treatments

Bioengineer by Bioengineer
September 11, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image created by Scixel (http://scixel.es/), under the instructions of D. Luque and P. J. de Pablo.

Researchers have provided new insight on the mechanics of a virus that causes severe diarrhea and sickness in young children, according to a report published in eLife.

The study, from the Autonomous University of Madrid, Carlos III Health Institute and National Center for Biotechnology, Spain, could open up new avenues for developing effective treatments for rotavirus, which commonly infects children up to five years old. It is the first paper to detail the interplay between the function and mechanical properties of a 'multilayered' virus.

Virus particles enclose their genetic material in a protein shell designed to protect, shuttle and release its genome at the host cell. The structure of virus particles therefore need to be strong enough to protect the viral genome in environments outside the cell, and to withstand attacks from the host immune system, to ensure successful infection.

Many double-stranded RNA viruses, such as rotavirus, isolate their genome within a core shell that incorporates its own molecular machinery to allow the genome to replicate and spread. Some viruses take this a step further and build extra concentric protein layers that function in other ways, such as to help bind and penetrate their target cells.

"The complete particle of rotavirus is formed by three independent protein shells. This particle and the subviral particles containing one or two protein layers play distinct roles during infection," explains lead author Manuel Jiménez-Zaragoza, Research Assistant in the Department of Physics of Condensed Matter at the Autonomous University of Madrid. "We wanted to see how the interactions between the layers that define these different particles work together during the virus replication cycle."

Although previous studies have revealed how to purify two-layer protein particles, the authors of the current work have developed a novel way to purify single-layer particles, allowing them to be studied individually. After purifying these subviral particles, the team used a scanning probe system called atomic force microscopy, which involves using a small, sharp stylus to deform the virus particles. This allowed them to study the strength and stability of individual triple, double and single-layered particles.

They discovered a strong interaction between the external and middle layers, which they say is critical for the protection of the complete virus particle. Meanwhile, the interactions that take place between the middle and inner layers help the virus to replicate its genome among host cells, a process known as transcription.

"Our findings reveal how the biophysical properties of the three protein shells are fine-tuned to enable rotavirus to be carried among host cells," says senior author Pedro de Pablo, Associate Professor at the Autonomous University of Madrid. "We believe this could prove valuable in offering new venues for the development of novel antiviral strategies."

###

Reference

The paper 'Biophysical properties of single rotavirus particles account for the functions of protein shells in a multilayered virus' can be freely accessed online at https://doi.org/10.7554/eLife.37295. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Senior Press Officer
eLife
[email protected]
01223 855373

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, including Physics of Living Systems, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org/about.

To view the latest Physics of Living Systems research published in eLife, visit https://elifesciences.org/subjects/physics-living-systems.

Media Contact

Emily Packer
[email protected]
@elife

http://www.elifesciences.org

Original Source

https://elifesciences.org/for-the-press/2efd0153/new-insight-on-rotavirus-mechanics-could-lead-to-improved-treatments http://dx.doi.org/10.7554/eLife.37295

Share16Tweet7Share2ShareShareShare1

Related Posts

Key Data Variables in Neonatal Transport Uncovered

November 5, 2025

Plant Polyphenols: Key Players in Ovarian Aging

November 5, 2025

Revolutionizing Signal Transduction with Nano-Bio Interfaces

November 5, 2025

Revolutionizing Internal Medicine: Ambient AI Scribe Integration

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Nomogram Predicts Lymphoma Blood Clots

Key Data Variables in Neonatal Transport Uncovered

Plant Polyphenols: Key Players in Ovarian Aging

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.