• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UTA biochemists study enzymes to provide keys for drug development

Bioengineer by Bioengineer
August 30, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UTA

UTA biochemists are mapping the function of specific enzymes which may facilitate development of new drugs to fight bacterial infection, cancer and potentially neurodegenerative diseases like autism, Down syndrome, Parkinson's disease and Alzheimer's.

"Sulfur is the one of most abundant elements in the body but little is known about the enzymes involved in its metabolism," said Brad Pierce, UTA associate professor of biochemistry and project lead.

"Autistic, Alzheimer and Down syndrome patients all demonstrate abnormal sulfur metabolism. If we can work out how human sulfur-oxidizing enzymes function, or more crucially, how their behavior changes in bacteria or in specific diseases, this information could be used for the rational design of drugs targeted for these diseases. Currently, no such technology exists."

Pierce recently received a $429,033 National Institutes of Health grant to continue his work retro-engineering the sulfur oxidation process and mapping out of the chemical mechanism of three key enzymes – cysteine dioxygenase, cysteamine dioxygenase, and 3-mercaptopropionic acid dioxygenase – to provide the necessary framework to develop effective therapies and drugs for different disease states.

"By comparing the behavior of these enzymes in humans to bacteria we can also open up opportunities to stamp out "superbugs" by providing an alternate means to disrupt bacterial metabolism without adversely affecting the patient," Pierce said. "This is particularly important as we are now seeing widespread drug-resistant bacterial strains."

Pierce's team uses rapid-mix, freeze-quench techniques to 'trap' and monitor the progress of chemical reactions at millisecond intervals. Analysis of these results provides a step-by-step picture of how these enzymes function in both mammals and bacteria.

UTA chair of chemistry and biochemistry Fred MacDonnell congratulated Pierce on his new grant.

"Dr. Pierce's group looks at fundamental life processes outside the traditional sphere of biochemistry and employs very modern techniques to investigate enzyme function and regulation," said Fred MacDonnell, UTA chair of chemistry and biochemistry.

"By providing the fundamental scientific background needed to develop therapies for critical conditions, his lab could make a real impact on the development of new medical solutions."

At UTA, Pierce has also been honored with a President's Award for Excellence in Teaching.

###

Media Contact

Louisa Kellie
[email protected]
817-524-8926
@utarlington

http://www.uta.edu

Original Source

https://www.uta.edu/news/releases/2018/08/Brad%20Pierce%20NIH%20grant.php

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.