• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Rare-earth magnet recycling tech wins innovation award

Bioengineer by Bioengineer
August 28, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Ames Laboratory, U.S. Department of Energy

An acid-free dissolution rare-earth magnet recycling process has earned a 2018 Notable Technology Development Award from the Federal Laboratories Consortium (FLC).

Researchers at the Critical Materials Institute (CMI) and Ames Laboratory invented a magnet recycling process in which magnets are dissolved in water-based solutions, recovering more than 99 percent purity rare earth elements. Cobalt is also recovered from cobalt-containing magnet wastes. The rare earth materials recovered have been reused in making new magnets, and the recovered cobalt shows promise for use in making battery cathodes.

One of the panel judges commented, "Rare earths are used in industry, defense, and electronics. If they can be obtained through recycling rather than imported from a foreign country, this innovation is worthy of recognition."

This technology resulted from analyzing industrially generated wastes from three U.S. magnet manufacturing and processing companies. A U.S. hard disk drive shredding company supplied shredded HDDs. These collaborations ensured that materials used for this research are same as those generated in real-life situations. In addition, the Ames Laboratory Materials Preparation Center reduced the magnets from this research into metal ingots. Collaboration is on-going with a commercial partner, Infinium Metals, to produce metal ingots at larger scale.

The inventors of the process are Ikenna Nlebedim and Denis Prodius, both of Ames Laboratory; and Anja-Verena Mudring, formerly at Ames Laboratory but currently at Stockholm University. Patents for the process are filed. Information on this and other CMI inventions may be found at cmi.ameslab.com.

"A unique strength of this technology is that operational hazards and negative environmental impacts associated with acid-based dissolution process are eliminated without sacrificing purity, efficiency and potential economic impact" said Ikenna Nlebedim, the lead investigator for the research.

"We're extremely proud of this success, because it demonstrates the effectiveness of the Critical Materials Institute to deliver innovations that lessen our domestic reliance on imported specialty materials," said CMI Director Chris Haase. "We look forward to leveraging CMI's world-class technology, skills and network to enable timely, profitable and environmentally responsible technology deployments."

The award will be presented at the FLC Far West and Mid-Continent Regional Meeting held in Oklahoma City, Okla. Aug. 28-30. The Federal Laboratory Consortium for Technology Transfer (FLC) is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace.

###

The Critical Materials Institute is a Department of Energy Innovation Hub led by the U.S. Department of Energy's Ames Laboratory and supported by the Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office, which supports early-stage research to advance innovation in U.S. manufacturing and promote American economic growth and energy security. CMI seeks ways to eliminate and reduce reliance on rare-earth metals and other materials critical to the success of clean energy technologies.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

Ames Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Laura Millsaps
[email protected]
@Ames_Laboratory

http://www.external.ameslab.gov

Original Source

https://www.ameslab.gov/news/news-releases/rare-earth-magnet-recycling-tech-wins-innovation-award

Share13Tweet8Share2ShareShareShare2

Related Posts

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025
3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025

The Fascinating Origins of Our Numerals

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

‘Molecular Glue’ Activates Immune System to Combat Neuroblastoma

New Study Reveals Lower Melanoma Rates Among Individuals with Multiple Tattoos

A Motor-Sparing Local Anesthetic: Is It Within Reach?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.