• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Signaling cascade that repairs damaged nerve cells characterized

Bioengineer by Bioengineer
August 24, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Naoki Hisamoto

Researchers at Nagoya University have identified the series of molecules involved in the regeneration of damaged nerves in roundworm, showing that it largely overlaps with the signals used by the intrinsic removal system to take up and process dying cells.

Nagoya, Japan – The branches of nerve cells called axons are particularly susceptible to damage due to the long distances they extend to communicate with each other. In humans, such damage in peripheral regions of the body can be relatively well repaired, but this repair is less effective in the brain and the spinal cord, which helps to explain why conditions such as brain and spinal cord injuries are so debilitating.

In a new paper published in the journal Nature Communications, researchers at Nagoya University have made a major advancement in characterizing how axons regenerate by studying the roundworm Caenorhabditis elegans, a species that is widely used in biological research and has a very well-characterized nervous system. Specifically, they have shown that axon repair occurs using largely the same set of molecules that mediate the recognition and engulfment of apoptotic (dying) cells by the surrounding cells. The result suggests that this system has been co-opted for an additional purpose over the course of evolution.

The team used a laser to cut roundworm axons and then analyzed the subsequent series of molecular reactions that occurred. They found that this damage resulted in the movement of a lipid called phosphatidylserine (PS) from the inside of cells to their outside, which was mediated by a protein called an ABC transporter. This externalized PS was then recognized by another molecule, triggering a series of reactions that eventually led to repair of the axon. Interestingly, PS is better known as an "eat me" signal that helps the phagocytosis of a dying cell by its neighbors.

"We were able to dissect the complex range of molecules involved in axon repair by using fluorescent labels in and around the severed axon and knocking down the individual components suspected of being involved," says corresponding author Kunihiro Matsumoto. "Although many of these molecules are also active in promoting phagocytosis of apoptotic cells, in axon repair that creates a 'save me' signal rather than an 'eat me' one, which enables the axons to regenerate."

The team explains that for the repair of damaged nerves, the PS labeling appears only at the severed sites and exists for only a short time (~1 hr), which is in contrast to the labeling in eliminating dying cells that remains for a long time until the cells are eliminated. The researchers now guess that this difference in signal timing may be one way for the cells to distinguish the meaning of the PS signal – 'eat me' vs. 'save me.'

According to Naoki Hisamoto, "Now that we know how this system works in the relatively simple roundworm, we should eventually be able to extrapolate the findings to humans. This could provide us with a range of targets for pharmaceutical interventions to treat conditions like brain and spinal cord injuries, in which the human body is not able to repair damaged nerves."

###

The article "Phosphatidylserine exposure mediated by ABC transporter activates the integrin signaling pathway promoting axon regeneration" is published in Nature Communications at doi: 10.1038/s41467-018-05478-w.

Media Contact

Sebastian Eifrid
[email protected]
@NU__Research

http://www.nagoya-u.ac.jp/en/

Original Source

http://en.nagoya-u.ac.jp/research/activities/news/2018/08/signaling-cascade-that-repairs-damaged-nerve-cells-characterized.html http://dx.doi.org/10.1038/s41467-018-05478-w

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Reveals How Stress Hormones Silence Key Brain Genes via Chromatin-Bound RNAs

New Study Reveals How Stress Hormones Silence Key Brain Genes via Chromatin-Bound RNAs

November 4, 2025
blank

Glycolysis Gene Insights from Streptomyces coelicolor M145

November 4, 2025

New Study Uncovers Variation in Viral Risk Among Bat Species

November 3, 2025

16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights into Drug-Facilitated Sexual Assault Cases

Pest Dynamics and Climate: Sustainable Solutions for Kagera Sugar

Globalizing Vignette Learning with Language Models

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.