• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Smoked Out: Researchers develop a new wildfire smoke emissions model

Bioengineer by Bioengineer
August 24, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chemical engineering researchers from Brigham Young University have developed an advanced model that can help predict pollution caused by wildfire smoke.

The research, sponsored by the USDA Forest Service and the Department of Energy, provides a physical model that can more reliably predict soot and smoke emissions from wildfires over a range of conditions.

"The smoke that you see from wildfires is a combination of evolved gases and soot," said Alex Josephson, a Ph.D. student in BYU's chemical engineering program who also works on the project at Los Alamos National Laboratory. "When we look at smoke as far as health effects, typically we care about those soot particles; and that's what we're modeling."

Recent wildfires in the West have caused air quality to tank in a number of major western cities for several days this August, reaching orange and even red levels for long stretches. Orange days are unhealthy for sensitive groups while red-level days are considered unhealthy to all people and can result in serious health effects for children or older individuals.

The BYU/Los Alamos-developed model uses detailed physics-based formulas to predict the initial formation of soot particles emitted during wildfires. Experimental measurements of smoke content can involve fairly unsophisticated procedures, such as vacuum sampling of particles as they are produced from a flame.

"Billions of dollars are spent on fighting wildfires and this summer it felt like the whole West was on fire," said David Lignell, professor of chemical engineering and senior author on the study, recently published in academic journal Combustion and Flame. "Besides emissions, soot impacts thermal radiation and flame temperature, which can be important factors in fire spread. Ultimately, understanding the basic physical processes in fires and being able to accurately model them under realistic conditions will aid in predicting smoke emissions and related health effects."

Current wildfire prediction models are too computationally expensive to run for large-scale wildfires. The BYU/Los Alamos-produced model, which looks like something scratched out on a chalkboard in A Beautiful Mind (see image right), provides foundational elements to validate more efficient models that can be applied on supercomputers at a reasonable computational cost.

The research is aimed at helping the Forest Service and other wildfire management groups better know the impact of prescribed burns on the surrounding urban environments. (Prescribed burns are one method to help prevent wildfires.) According to Josephson, he's "providing the tools to give information to help the people that need to make those decisions."

"When a natural wildfire occurs, no one is responsible for the emissions because it is an act of nature," he said. "But when the Forest Service wants to prescribe a fire, then suddenly you are responsible for the smoke and the emissions coming from it. You better understand the emissions before starting a fire that could have serious effects on surrounding communities."

Funding for the research comes more specifically from the Rocky Mountain Research Station of the Forest Service and the Department of Energy's National Nuclear Security Administration, through the University of Utah's Carbon Capture Multidisciplinary Simulation Center.

While Lignell said there is still a gap between their research and how it directly impacts the air people are breathing, he's personally invested in bridging that gap — not just as a chemical engineer, but as someone with asthma.

"When smoke fills the valley, I take that personally; it really affects people's lives," Lignell said. "It certainly makes you pay attention to wildfire issues and makes you want to be a part of working on these issues."

###

Media Contact

Todd Hollingshead
[email protected]
801-422-8373
@byu

http://www.byu.edu

https://news.byu.edu/news/byu-researchers-develop-new-wildfire-smoke-emissions-model

Related Journal Article

http://dx.doi.org/10.1016/j.combustflae.2018.06.020

Share12Tweet7Share2ShareShareShare1

Related Posts

Advancing Neurohistology of Liver and Pancreas Innervation

November 10, 2025

Harnessing Diverse NK Cell Repertoire for Leukemia Therapies

November 10, 2025

Could Liquid Biopsy Testing Enable Earlier Detection Across Multiple Cancer Types?

November 10, 2025

Deregulation of NKX3.1 and AURKA in Prostate Cancer

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Neurohistology of Liver and Pancreas Innervation

IL-6’s Role in Nasopharyngeal Carcinoma Progression

Harnessing Diverse NK Cell Repertoire for Leukemia Therapies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.