• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Trace metals in the air make big splash on life under the sea

Bioengineer by Bioengineer
August 22, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – In the ocean, a little bit of metal can go a long way.

A new Cornell University-led study shows that trace metals, deposited by aerosols like dust and other particles in the atmosphere, have a hefty impact on marine life, affecting biological productivity and changing the ocean ecosystem.

The paper, "Aerosol Trace Metal Leaching and Impacts on Marine Microorganisms," was published in Nature Communications.

The sources of such aerosol particles range from volcanoes, wildfires and desert dust to anthropogenic causes, like the burning of fossil fuels. After being spewed up and undergoing chemical reactions in the atmosphere, these particles often make their way to remote ocean regions, where they are deposited via precipitation or dry deposition.

"In a pollution event or a dust storm, and even in these faraway places, atmospheric deposition can be the most important source of new metals," said lead author Natalie Mahowald, the Irving Porter Church Professor of Engineering and Atkinson Center for a Sustainable Future faculty director for the environment.

Some metals prove to be insoluble and drop to the ocean floor, while others are taken up by various biota – "the little guys," in Mahowald's words – like phytoplankton and bacteria, which make up 80 percent of marine life and act as circulators of oxygen and nutrients throughout the ecosystem.

"If you change the ecosystem structure at this scale – this is where all the productivity occurs – it will cascade up and impact the fish and the animals we see more easily," Mahowald said.

While previous research has focused on the pivotal role of iron in the oceans, Mahowald and her team examined the effects of iron and other metals, including aluminum, manganese, zinc, lead, copper, nickel, cobalt and cadmium. Many of these metals, such as copper, can be toxic pollutants, but the researchers found that the metals sometimes function as nutrients, depending on how, where and with what they are mixed.

###

The research was funded by grants from the Department of Energy and the National Science Foundation, as well as support from the Atkinson Center.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Media Contact

Jeff Tyson
[email protected]
607-793-5769
@cornell

http://pressoffice.cornell.edu

http://news.cornell.edu/stories/2018/08/trace-metals-make-big-splash-marine-microorganisms

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-04970-7

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.