• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

ASU partners with Mayo Clinic to move germ-killing clays closer to medical use

Bioengineer by Bioengineer
August 21, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Lynda Williams/ASU

Researchers at Arizona State University and the Mayo Clinic in Rochester, Minnesota, have found that at least one type of blue clay may help fight disease-causing bacteria in wounds, including antibiotic-resistant bacteria. The findings appear in the International Journal of Antimicrobial Agents.

This work builds on earlier ASU-led research into how two metallic elements — chemically reduced iron and aluminum — in blue clays operate in tandem to kill germs. That research involved the use of ASU's NanoSIMS, which is part of the National Science Foundation-supported Secondary Ion Mass Spectrometry Facility.

"Our new results go beyond testing the clays against free-floating bacteria," says Lynda Williams, a clay-mineral geologist at ASU's School of Earth and Space Exploration. "A more common situation in treating infections is dealing with biofilms — essentially self-supporting colonies of bacteria."

Biofilms occur when bacteria attach to surfaces and develop a film or protective coating, making them relatively antibiotic-resistant. An everyday example, Williams says, is the film on your teeth first thing in the morning.

Roughly two-thirds of the infections seen by doctors, nurses, and other health care providers involve biofilms.

"We showed that this reduced iron-bearing clay can kill some strains of bacteria under the laboratory conditions used, including bacteria grown as biofilms, which can be particularly challenging to treat," says Robin Patel, a physician, clinical microbiologist, and infectious diseases specialist at Mayo. She is senior author of the study.

"This study is an important advance in understanding how clays, specifically blue clay from Oregon, have shown medicinal properties against pathogenic bacteria," says Enriqueta Barrera, program director in the National Science Foundation's Division of Earth Sciences, which funded the research.

In laboratory tests the researchers found the clay has antibacterial effects against bacteria such as Escherichia coli and Staphylococcus aureus, including resistant strains such as carbapenem-resistant Enterobacteriaceae and methicillin-resistant Staphylococcus aureus (MRSA).

The research is preliminary, and the authors caution that only one concentration of the clay suspension was tested. The lab tests are a first step in simulating the complex environment found in an actual infected wound.

They also caution that not all types of clay are beneficial. Some may actually help bacteria grow. More research is needed to identify and reproduce the properties of clays that are antibacterial, with the goal of possibly synthesizing a consistent compound of the key minerals under quality control.

The next steps, Williams says, will involve using ASU's NanoSIMS to investigate how the clays transfer chemical elements into bacteria and kill them. "We will be synthesizing pure clays that mimic the natural clays' antibacterial mechanism, and we will be evaluating their impact on infectious diseases."

Williams explains that she has been researching the effects of antibacterial clays since 2004.

"We were especially glad to interest Mayo in this research," she says. "Our earlier results pointed the way, yet they have the facilities and resources to test these blue clays against pathogens to a degree that we could not."

###

Media Contact

Robert Burnham
[email protected]
480-458-8207
@ASU

http://asunews.asu.edu/

Original Source

https://asunow.asu.edu/20180820-asu-partners-mayo-clinic-move-germ-killing-clays-closer-medical-use http://dx.doi.org/10.1016/j.ijantimicag.2018.07.018

Share12Tweet7Share2ShareShareShare1

Related Posts

Advancing Glaucoma Treatments: A Preservative-Free Future

October 13, 2025

Exploring Gender Differences in Aortic Valve Stenosis

October 13, 2025

Studying Neurological Disorders: Insights on Sex Differences

October 13, 2025

Exercise Boosts Recovery in Pediatric Cancer Patients

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1229 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Building Multifunctional Soil from Urban Organic Waste

Deep Learning Enhances MRI Quality in Pediatric Hippocampal Sclerosis

Boosting Lithium Storage in Zn2GeO4 with VS2 Nanosheets

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.