• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Love vine sucks life from wasps, leaving only mummies

Bioengineer by Bioengineer
August 20, 2018
in Health
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Mattheau Comerford/Rice University

Early this spring, Rice University evolutionary biologist Scott Egan stood in a patch of live oak scrub habitat in South Florida and scanned the trees for something he'd never seen outside his lab — a wispy, orange vine twining itself around swollen stems or pea-sized growths on the underside of oak leaves.

Egan needed visual confirmation of something he and his students noticed in the lab a few months earlier: love vine, a parasitic plant, latching onto and feeding off of not the tree itself, but the tumor-like growths made by his favorite insects, gall wasps.

"I went to spots where I knew that my gall-formers and the vines were, and I just blurred my eyes across the tops of the trees," Egan said, re-enacting the moment he scanned the forest. "And, once you have seen it, you can't not see it. I'm like, 'Oh. It's everywhere. I can't not find it, on this branch, or on this one or this one."

For Egan, who has spent 17 years studying gall-forming insects and logged thousands of miles collecting samples from oak forests across a dozen U.S. states, it was a revelation.

"I had never seen this," Egan said. "But the fact that no one, as far as we know, had ever documented this was incredible because biologists have studied each of these — the vines and the insects — for more than a century."

In ecological parlance, the find was a new trophic interaction between two species, meaning that one was feeding off the other. "Basically, you have a parasitic plant attacking a parasitic insect inside of another host, a host they share," he said.

The new discovery is the subject of a paper this week in Current Biology. Egan, an assistant professor of biosciences at Rice, said the find is exciting because it shows a new aspect of nature that hadn't previously been noticed and because it could offer clues about ways to control agricultural pests and perhaps even fight cancer.

"Galls are like tumors in many ways," Egan said. "The wasps induce them to grow at the site where they lay their eggs, but the galls are part of the tree. The cells there have the same DNA as any other cell in the tree. They've just been reprogrammed to grow and behave in a way that is ultimately harmful to the tree.

"If we can find out how the vines identify the galls, how they zero in on them, it could potentially provide new clues for targeting and fighting cancer," he said.

Gall-forming wasps are among 13,000 insect species worldwide that use biochemistry to trick trees and other plants into growing their nurseries for them. One species that's native to Texas and Florida is Belonocnema treatae, — also called B. treatae — which lays its eggs only on the underside of newly growing oak leaves. A mix of venom and proteins laid down with the egg coax the tree into growing a smooth sphere of hard brown material around the egg. Encased inside this crypt, the larval wasp feeds on a steady flow of nutrients drawn directly from the tree's vascular network, and emerges when it is mature.

In the fall of 2017, study co-author Glen Hood, a Rice Academy Postdoctoral Fellow working in Egan's lab, had spent three long days gathering samples over a 1,000-mile route that wound through Florida.

"At each site, he finds our gall-formers, collects foliage with our gall wasps on them and seals them in large, 1-gallon plastic bags," Egan said. "There are up to five bags for each site. So he comes back with a bunch of bags, and we get everyone in the lab together to sit around tables and go through each bag by hand, dividing out the galls from the leaves, stems and other material. It takes all day."

Graduate student Linyi Zhang and a group of undergraduates were the first to notice the strange S-shaped twist of love vines, or Cassytha filiformis, growing around and between B. treatae galls on the underside of a leaf. Zhang brought the sample to Egan, but he was unconvinced.

"She said, 'Hey, I think the vine's attached to the gall,'" Egan recalled. "I looked at it and said, 'No. They don't interact. That's just a fruit or seed from the parasitic plant,' but she didn't give up, so we took a closer look under the microscope, and I said, 'No?! This cannot be.'

"I cut it in half, and right in the center was a fully mature but mummified adult wasp," Egan said.

The group gathered all the material it had just sorted and went through all of it again. The biologists found several more samples, and in the months since, Egan, Hood, Zhang and co-author Mattheau Comerford, another Ph.D. student, have found dozens more, including examples of the vines attacking other species of gall-forming wasps. Out of 51 dissected samples of B. treatae galls attacked by love vines, 23 contained a desiccated, mummified adult. In contrast, only two of the 101 galls not attacked by vines contained dead wasps.

"The attacks are also associated with different gall sizes," Egan said. "We found the vines attached to galls that were slightly larger than average. That means the vine is either only attacking larger galls, or the vine is inducing the galls that it attacks to grow bigger, perhaps to draw more energy from them."

Egan said the discovery of the new trophic interaction is exciting because it shows an aspect of nature that hadn't previously been noticed and because it's possible that similar interactions happen between many other species.

"This is the first time anyone has ever discovered a parasitic plant and parasitic gall wasp interacting on a shared host plant," Egan said. "This could be unique, but biologists have catalogued more than 1,300 species of gall-forming wasps and more than 4,000 species of parasitic plants, so this could just be the tip of the iceberg."

###

VIDEO is available at: https://youtu.be/2ICiUH0VwD0

A copy of the paper is available at: https://www.cell.com/current-biology/fulltext/S0960-9822(18)30815-7

The research was funded by Rice University.

Related research from Rice:

Insidious wasp gets ahead by tunneling through host's head — Jan. 24, 2017 http://news.rice.edu/2017/01/24/insidious-wasp-gets-ahead-by-tunneling-through-hosts-head/

Eco-detector will hunt GMOs that escape to environment — Oct. 10, 2016 http://news.rice.edu/2016/10/10/eco-detector-will-hunt-gmos-that-escape-to-environment/

Caught in the act: New wasp species emerging — Oct. 29, 2015 http://news.rice.edu/2015/10/29/caught-in-the-act-new-wasp-species-emerging/

Evolution study finds massive genome shift in one generation — June 15, 2015 http://news.rice.edu/2015/06/15/evolution-study-finds-massive-genome-shift-in-one-generation/

Caught in the act: Study probes evolution of California insect — May 15, 2014 http://news.rice.edu/2014/05/15/caught-in-the-act-study-probes-evolution-of-california-insect/

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
[email protected]
713-348-6327
@RiceUNews

http://news.rice.edu

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2018.06.024

Share12Tweet8Share2ShareShareShare2

Related Posts

Assessing Disability: WHO vs. Daily Living Scales

September 16, 2025
blank

Practical Skin Care Tips for 22–24 Week Infants

September 16, 2025

TUG1 Suppression Boosts Immunity and Lenvatinib in Liver Cancer

September 16, 2025

GLP-1 Drugs Demonstrated as Cost-Effective Treatment for Knee Osteoarthritis and Obesity

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Disability: WHO vs. Daily Living Scales

Creating a Sulfur Vacancy Redox Disruptor for Innovative Therapies Targeting Cuproptosis, Ferroptosis, and Apoptosis through Photothermoelectric and Cascade Catalytic Mechanisms

Practical Skin Care Tips for 22–24 Week Infants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.