• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers find pathways that uncover insight into development of lung cancer

Bioengineer by Bioengineer
August 17, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Xuemei Ji, M.D., Ph.D.

LEBANON, NH – Lung cancer is the leading cause of preventable cancer death. A disease of complex origin, lung cancer is usually considered to result from effects of smoking and from multiple genetic variants. One of these genetic components, a chromosome named 15q25.1, has been previously identified as a leading influencer of susceptibility to lung cancer, smoking behavior, and nicotine addiction. However, no previous study has investigated the mechanisms of this lead agent, or documented the susceptibility pathways that allow this chromosome to modify development of disease.

A research team led by Xuemie Ji, MD, PhD, Research Associate in Department of Biomedical Data Science at Dartmouth's Geisel School of Medicine, helped solve this central problem. The team identified two main pathways involving the mechanism by which the chromosome 15q25.1 locus influences lung cancer risk. The first pathway is an interaction pathway in the nervous system that is implicated in nicotine dependence. The other pathway can control key components in many biological processes, such as transport of nutrients and ions, and the human immune system.

The results have been newly published in Nature Communications. "Our findings in pathways uncover insights into the mechanism of lung cancer etiology and development, which will potentially shorten the interval between increasing biological knowledge and translation to patient care," says Ji. "Blocking genes downstream or in parallel pathways might provide a strategy to treat such cancer."

The study used two independent cohorts of 42,901 individuals with a genome-wide set of genetic variants, as well as an expression dataset with lung tissue from 409 lung cancer patients to validate findings. Two different methods were used to analyze data, and confirm that the findings are reliable and can be repeated with different methods. "To our knowledge, this is the first study to explore the pathogenic pathways related to the mechanisms of chromosome 15q25.1 and the first to use a novel analysis approach to analyze data and to validate the findings," says Ji. "The ability to block the damaging genetic variants downstream or in parallel pathways might improve lung cancer prognosis and survival, and therefore provide alternative strategies to treat such cancer."

The team is working to identify more mechanisms contributing to the increased risk of lung cancer. They aim to provide more explanation for the large unexplainable division of lung cancer occurrences.

###

Xuemei Ji, MD, PhD is a Research Associate in Department of Biomedical Data Science at Geisel School of Medicine. Interests in cancer control research include identification of susceptibility mutations, common genetic variants and pathways in modifying disease etiology.

About Norris Cotton Cancer Center at Dartmouth-Hitchcock

Norris Cotton Cancer Center combines advanced cancer research at Dartmouth's Geisel School of Medicine with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center in Lebanon, NH, at Dartmouth-Hitchcock regional locations in Manchester, Nashua and Keene, NH, and St. Johnsbury, VT, and at partner hospitals throughout New Hampshire and Vermont. It is one of 49 centers nationwide to earn the National Cancer Institute's "Comprehensive Cancer Center" designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at cancer.dartmouth.edu.

Media Contact

Jaime Peyton
[email protected]
603-653-3615

http://www.dhmc.org/webpage.cfm?org_id=796

Original Source

http://www.nature.com/articles/s41467-018-05074-y http://dx.doi.org/10.1038/s41467-018-05074-y

Share12Tweet8Share2ShareShareShare2

Related Posts

Texas A&M Researchers Develop Innovative Cryopreservation Technique to Stop Organ Cracking

September 18, 2025

Optimizing Geriatric Care: Staff Insights on Patient Mobilization

September 18, 2025

Researchers Pinpoint Potential Therapeutic Targets in Pediatric Germ Cell Tumors

September 18, 2025

Science Update: Unraveling the Global Impact of Cardiovascular Disease

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Emerging Research Links Microplastics to Potential Risks for Bone Health

Early Universe Galaxies Unveil Hidden Dark Matter Maps

Texas A&M Researchers Develop Innovative Cryopreservation Technique to Stop Organ Cracking

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.