• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

‘Traffic wardens’ of cells can be counterproductive

Bioengineer by Bioengineer
August 16, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Alexandra Tavares, IGC.

A research team from the Instituto Gulbenkian de Ciência (IGC) and the Centre for Biomedical Research (CBMR)/ University of Algarve (UAlg), lead by Raquel Oliveira (IGC) and Rui Gonçalo Martinho (CBMR/ UAlg), found that a mechanism of cell division control can be associated with an increase of errors in chromosomes distribution. This process can influence the development of diseases, such as cancer, infertility and some congenital disorders. The study will be published on the 16th of August in the Current Biology* journal.

In order to divide into two equal cells, a mother cell must replicate its DNA and divide it equaly. Correct division is important to assure that new cells receive the exact number of chromosomes – the structures where our genetic information is located. When failures occur during this process, the associated errors can contribute to the development of several diseases.

The research now published focuses on a regulation mechanism called the Spindle Assembly Checkpoint, or Mitotic Checkpoint, that is crucial to guarantee the correct separation of chromosomes. This checkpoint works as a sort of traffic warden that stops the traffic whenever there is a problem in order to prevent accidents.

So far, it was established that the mitotic checkpoint is important to prevent errors in chromosomal distribution during cell division, as it halts the completion of mitosis if errors are present. The research done by this team shows that it is not always like that, and sometimes, the action of the traffic warden can be counterproductive. The researchers revealed that this was the case when cells presented problems in the "glue" that joins chromosomes. When facing these irreversible errors, the continuous action of the mitotic checkpoint can lead to an increase in genetic errors.

As Rui Martinho explains "if the problem is irreversible and the traffic warden stops the traffic continuously, the solution is worse than the problem, exacerbating the probability of serious accidents to occur".

The research, performed with the fruit fly Drosophila melanogaster, comes in this way to stir up a scientific dogma: that the mitotic checkpoint is always beneficial for the dividing cell.

This study shows that "errors associated to the loss of cohesion between chromosomes, common to several human disorders, may be partially corrected by removing the traffic warden, as opposed to what we would expect", explains Raquel Oliveira.

It should be noted that the mitotic checkpoint is currently a target for cancer therapy. The research team is now testing if the observation described in the fruit fly also verifies in human cells. Would that be the case, it would help us understand the interaction of the mitotic checkpoint and chromosome cohesion in the development of several human disorders. These results may also contribute to the design of therapeutic strategies, both in cancer and in other disorders associated with errors in cell division.

###

* Silva, R.D., Mirkovic, M., Guilgur, L.G., Rathore, O.M., Martinho, R.G. and Oliveira, R.A. (2018) Absence of the Spindle Assembly Checkpoint restores mitotic fidelity upon loss of sister chromatid cohesion. Current Biology 28: 1-8. https://doi.org/10.1016/j.cub.2018.06.062

Media Contact

Ana Mena
[email protected]
351-214-407-959
@IGCiencia

http://www.igc.gulbenkian.pt

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2018.06.062

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.