• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A trained eye

Bioengineer by Bioengineer
August 15, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

We humans are pros at category learning — the process by which we classify things, whether objects, concepts or events, into groups that share certain features that are relevant to us. We do it when we distinguish friends from strangers, decide whether or not to eat that wild berry, and even when we scan letters as we read an article about visual learning.

For the most part, category learning has been considered a high-level cognitive process that depends on abstract mental representations of the sensory information. But UC Santa Barbara researchers Luke Rosedahl, Gregory Ashby and Miguel Eckstein have discovered something else. Category learning, they have found, sometimes depends on representations from more primitive parts of the brain's visual cortex that are sensitive to the precise location on the retina receiving the stimulation.

"This is important because the kind of learning that we found to be specific to the visual field is almost a subconscious kind of learning," said Luke Rosedahl, a researcher in UCSB's Department of Psychological & Brain Sciences and lead author of the team's paper, "Retinal-specific category learning," published in the journal Nature Human Behavior. "It's the kind of learning used by radiologists, for example, when they're looking at scans to determine whether what they're seeing is a tumor or not. Or by TSA screeners when they're looking at scans of the bags and trying to find prohibited items; these are examples of implicit categorization."

Those experienced radiologists and TSA screeners amass their knowledge over the course of many trials, Rosedahl explained, so their decisions often are not particularly conscious, but come in the form of feelings and hunches.

"They couldn't always tell you why they feel like there's a tumor there, or why they feel like this scan has a prohibited item," he said, "but they do, and then they look closely to see if it does or not."

However, Rosedahl and colleagues found that where the objects appear in one's field of vision can affect the person's ability to determine what it is. Thus, a radiologist who is accustomed to seeing tumors on the right side of his or her field of vision may not have the same level of success if the tumor is located on the left. And screeners who are used to objects scrolling by in one direction may not detect prohibited items coming from the opposite direction. In effect, they develop "categorizing blindspots."

To investigate the phenomenon, the scientists developed a series of experiments in which subjects were trained to categorize objects that appeared on one side of their visual fields, with one eye covered. Then they performed the experiment a second time, covering the other eye and flipping the object to the side opposite the trained eye.

"So what we found is when you switch eyes, performance does not decrease," Rosedahl said. "But when you move the object to the other side, it does decrease. And that tells us two things. It tells us one, that the knowledge does generalize to the other eye, but it also tells us that the performance decrease for the other side wasn't due to just any change in the experiment."

According to Rosedahl, this phenomenon proves that some types of visual category learning depend on visual representations in the primary visual cortex, which is located at the very back of the mammalian brain and is specialized in pattern recognition. This primitive visual cortical area has neurons that respond to specific patterns in particular areas of the visual field, whereas neurons in later visual cortices respond to stimuli anywhere in the visual field.

"It shows us that this implicit categorization system is in fact relying on much lower visual information than previously thought," he said.

The results of this study have implications for all of us who learn to recognize patterns that appear only on certain areas of our visual fields. For instance, for Rosedahl, who is a novice surfer, this means he may have to work harder to judge a good wave when a set rolls in from the other side of the field of vision than the one he is used to.

"Is this a wave I'm going to be able to surf or not — that's an implicit process," he said. "My biggest question now is how do we set up visual training protocols so that it would not be retinal-specific? How would we have a training paradigm so that peoples' learning would be across the entire visual field?"

###

Media Contact

Sonia Fernandez
[email protected]
805-893-4765
@ucsantabarbara

http://www.ucsb.edu

http://www.news.ucsb.edu/2018/019144/trained-eye

Related Journal Article

http://dx.doi.org/10.1038/s41562-018-0370-z

Share12Tweet7Share2ShareShareShare1

Related Posts

Shunt Surgery Improves Outcomes for Older Adults with Hydrocephalus

September 16, 2025

New Study Finds Integrating Behavioral Health into Pediatric Primary Care Reduces Symptoms

September 16, 2025

The Impact of Integrated Behavioral Health Services on Psychosocial Symptoms in Children

September 16, 2025

Scientists Discover New Mechanism by Which HIV Integrates into the Genome

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Efficient Sulfamethoxazole Degradation with nZVCe/Biochar Composite

Innovative Method Enhances Accuracy of Right Whale Distribution Models

Shunt Surgery Improves Outcomes for Older Adults with Hydrocephalus

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.