• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New research predicts landslide boundaries two weeks before they happen

Bioengineer by Bioengineer
August 15, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Melbourne researchers have developed a software tool that uses applied mathematics and big data analytics to predict the boundary of where a landslide will occur, two weeks in advance.

Professor Antoinette Tordesillas from the School of Mathematics and Statistics said there are always warning signs in the lead up to a collapse or 'failure', the tricky part is identifying what they are.

"These warnings can be subtle. Identifying them requires fundamental knowledge of failure at the microstructure level – the movement of individual grains of earth," Professor Tordesillas said.

"Of course, we cannot possibly see the movement of individual grains in a landslide or earthquake that stretches for kilometres, but if we can identify the properties that characterise failure in the small-scale, we can shed light on how failure evolves in time, no matter the size of the area we are observing."

These early clues include patterns of motion that change over time and become synchronised.

"In the beginning, the movement is highly disordered," said Professor Tordesillas. "But as we get closer to the point of failure – the collapse of a sand castle, crack in the pavement or slip in an open pit mine – motion becomes ordered as different locations suddenly move in similar ways.

"Our model decodes this data on movement and turns it into a network, allowing us to extract the hidden patterns on motion and how they are changing in space and time. The trick is to detect the ordered motions in the network as early as possible, when movements are very subtle."

Professor Robin Batterham from the Department of Chemical and Biomolecular Engineering said the new software focuses on turning algorithms and big data into risk assessment and management actions that can save lives.

"People have gone somewhat overboard on so-called data analytics, machine learning and so on," said Professor Batterham.

"While we've been doing this sort of stuff for 40 years, this software harnesses the computer power and memory available to look not just at the surface movement, but extract the relevant data patterns. We're able to do things that were just unimaginable in a mathematical sense 30 years ago.

"We can now predict when a rubbish landfill might break in a developing country, when a building will crack or the foundation will move, when a dam could break or a mudslide occur. This software could really make a difference."

###

Media Contact

Holly Bennett
[email protected]
046-651-4367
@unimelb

http://www.unimelb.edu.au

http://dx.doi.org/10.1016/j.mechrescom.2018.08.008

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.