• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Snake fungal disease alters skin microbiome in eastern Massasaugas

Bioengineer by Bioengineer
August 15, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo by Michael Dreslik

In the first study of its kind, researchers characterized the skin microbiome of a population of free-ranging snakes to begin to understand how the animals' environmental microbial community may promote disease resistance as well as how it may be disrupted by infection.

The study, which was recently published in Scientific Reports, a Nature research journal, focused on eastern massasaugas in Illinois. This species of endangered rattlesnake is highly susceptible to the fungal pathogen Ophidiomyces ophiodiicola, which causes snake fungal disease (SFD). SFD results in disfiguring sores on snake skin, has a high mortality rate, and poses a significant threat to snake populations in North America and Europe. The mechanism by which the pathogen causes disease is unknown.

"Globally, fungal pathogens are increasingly associated with wildlife epidemics, such as white-nose syndrome in bats and chytridiomycosis in amphibians," said Dr. Matt Allender, a faculty member at the University of Illinois College of Veterinary Medicine and an affiliate of the Illinois Natural History Survey (INHS), part of the university's Prairie Research Institute. "Snake fungal disease has been identified in a number of snake species, but very little is known about contributing factors for infection."

Dr. Allender, who heads the Wildlife Epidemiology Laboratory, has been investigating SFD for more than 8 years. In 2014 he introduced a quantitative polymerase chain reaction (qPCR) test to quickly identify the fungus from a swabbed sample.

"In a 20-year collaborative study led by INHS researchers, we have been the primary investigator of numerous studies documenting disease trends in the eastern massasauga including overall health, but none of these health parameters seemed to explain the emergence of SFD. This study was undertaken in light of recent promising findings about the importance of environmental microbial communities in animal and human health."

Based on their analysis of 144 skin swabs collected from 44 snakes in 2015 and 52 snakes in 2016, all near Carlyle Lake, Ill., researchers determined that infection with SFD altered the bacterial and fungal diversity of the snakes studied. On the infected snakes, Ophidiomyces was present even at locations on the snakes' bodies distant to the open sores, indicating that the skin's entire microbiome is altered by the infection.

No Ophidiomyces spores were detected on SFD-negative snakes, as would have been expected had those snakes' microbiome proven protective against the pathogen.

Findings related to the specific bacteria and fungi found in greater or lesser abundance depending on the disease status of the snake are detailed in the study.

The researchers believe their findings will have broad relevance to other snake species and habitats and will provide insight into mechanisms of pathogen emergence, fluctuations in wellness of individuals, and development of therapeutic interventions.

###

Dr. Allender's coauthors on the microbiome study include Dr. Sarah Baker, a postdoctoral researcher at INHS; Megan Britton, who will complete her veterinary degree at Illinois in 2019; and Dr. Angela D. Kent, a professor in the College of Agricultural, Consumer and Environmental Sciences who directs the Program in Ecology, Evolution, & Conservation Biology, School of Integrative Biology, and is an affiliate of the Carl R. Woese Institute for Genomic Biology.

Media Contact

Chris Beuoy, Science Writer
[email protected]
@NewsAtIllinois

http://www.illinois.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

No Heritability Found in Extra-Pair Mating Behavior

September 16, 2025
blank

How Placental Research Could Revolutionize Our Understanding of Autism and Human Brain Evolution

September 16, 2025

Pueraria lobata and Puerarin Boost Dopamine Activity

September 16, 2025

Breakthroughs in Dynamic Biomacromolecular Modifications and Chemical Interventions: Insights from a Leading Chinese Chemical Biology Consortium

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cleveland Clinic Study Finds Bariatric Surgery Offers Superior Long-Term Benefits Over GLP-1 Medications

Stem Cell Transplant Promotes Brain Cell Regeneration and Functional Recovery After Stroke in Mice

“‘Internal Alarm System’ Activates Immune Defense to Combat Cancer”

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.