• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Four URI scientists among 100 researchers on NASA-led expedition to North Pacific

Bioengineer by Bioengineer
August 10, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

KINGSTON, R.I., August, 9, 2018 — Four scientists from the University of Rhode Island are among 100 researchers from 30 institutions who shipped out of Seattle today to embark on a month-long expedition to study microscopic organisms that live deep in the ocean and play a critical role in removing carbon dioxide from Earth's atmosphere.

The large-scale, multi-year campaign, EXport Processes in the Ocean from Remote Sensing (EXPORTS), is led by NASA with funding from the National Science Foundation. It is the first effort of its kind to study plankton, microscopic organisms, and their impact on Earth's carbon cycle — important information for climate modeling. Team members also will examine the impact of phytoplankton on the optical properties of the ocean's surface — how they absorb and scatter sunlight — which is fundamental to discerning the signals that satellites retrieve from space. The EXPORTS findings, combined with satellite data, will allow researchers to better understand what is happening deep in the oceans and the impacts on the carbon cycle.

The URI researchers are: Bethany Jenkins, associate professor of cell and molecular biology in the College of the Environment and Life Sciences; and Susanne Menden-Deuer, Melissa Omand and Tatiana Rynearson, assistant professors of oceanography at the Graduate School of Oceanography.

The scientists will sail 200 miles west of Seattle into the North Pacific Ocean on the research vessels Roger Revelle and Sally Ride to investigate the secret lives of plankton and the animals that eat them. They will deploy advanced underwater robotics and other instruments at ocean depths up to a half mile, where little or no sunlight penetrates. In these regions, referred to as the twilight zone, carbon produced by plankton can be confined in pockets and kept out of Earth's atmosphere for decades, or even thousands of years.

"The continued exploration of the ocean, its ecosystems and their controls on the carbon cycle as observed with advanced technologies by EXPORTS will provide unprecedented views of Earth's unseen world," said Paula Bontempi, EXPORTS program scientist at NASA headquarters in Washington, D.C. "The science questions the team is tackling really push the frontier of what NASA can do in both remote and in situ optical ocean research. NASA's goal is to link the biological and biogeochemical ocean processes to information from planned ocean-observing satellite missions, thus extrapolating the results from this mission to global scales."

Phytoplankton, drifting, single-cell plant-like organisms, are of particular interest to researchers because they play a key role in Earth's climate by removing heat-trapping carbon dioxide from the atmosphere through photosynthesis. Their abundance and high productivity make phytoplankton an ideal food source for small animals called zooplankton. Yet a detailed account of what becomes of that carbon — how much of it goes where within the Earth and for how long — has beset scientists for decades.

"If you have a million phytoplankton and zooplankton eat 500,000 of them, the phytoplankton can quickly bounce back to a million within one day," said Rynearson. "Phytoplankton provide energy for the whole ecosystem because they're able to replenish their populations rapidly."

One objective of the research is to improve understanding of plankton through genetics. Rynearson and others will be involved in identifying various phytoplankton and zooplankton species by their DNA and determining which species are at the surface, which are sinking, and which are living in the deep ocean.

"Essentially, we're trying to pick apart who's there and what they're doing and how much carbon is cycling through these different species," Rynearson said. The genetic data will be linked to optical measurements, conducted as part of the on-site work, to help build optical proxies of critical ocean ecosystem and biogeochemical properties. Scientists will then further define and refine approaches to measure ocean ecosystem variables remotely, ultimately linking carbon export processes to satellite measurements.

###

Keep up with the URI team during the expedition: https://web.uri.edu/rynearson-lab/blogs/

Follow EXPORTS on social media: @NASASocial
@NASAEarth
@NASAOcean
@NASAGoddard
@NASA

Media Contact

Carol McCarthy
[email protected]
401-874-4147

The University of Rhode Island

https://today.uri.edu/news/four-uri-scientists-among-100-researchers-on-nasa-led-expedition-to-north-pacific/

Share12Tweet7Share2ShareShareShare1

Related Posts

Single-Cell Rice Atlas Uncovers Cis-Regulatory Evolution

Single-Cell Rice Atlas Uncovers Cis-Regulatory Evolution

September 17, 2025
Functional Archaellum Structure in Chloroflexota Bacteria

Functional Archaellum Structure in Chloroflexota Bacteria

September 17, 2025

Nanomaterials Influence on Cellulase from Aspergillus and Trichoderma

September 17, 2025

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Caveolae, Rho Kinase Drive Senescence in Cancer Cells

Single-Cell Rice Atlas Uncovers Cis-Regulatory Evolution

New PfDHFR-TS Inhibitors Discovered from Natural Compounds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.