• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Nanoparticle therapy could deliver double blow to cancer

Bioengineer by Bioengineer
August 9, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new cancer therapy using nanoparticles to deliver a combination therapy direct to cancer cells could be on the horizon, thanks to research from the University of East Anglia.

The new therapy, which has been shown to make breast cancer and prostate cancer tumours more sensitive to chemotherapy, is now close to entering clinical trials.

And scientists at UEA's Norwich Medical School have confirmed that it can be mass-produced, making it a viable treatment if proved effective in human trials.

Using nanoparticles to get drugs directly into a tumour is a growing area of cancer research. The technology developed at UEA is the first of its kind to use nanoparticles to deliver two drugs in combination to target cancer cells.

The drugs, already approved for clinical use, are an anti-cancer drug called docetaxel, and fingolimod, a multiple sclerosis drug that makes tumours more sensitive to chemotherapy.

Fingolimod cannot currently be used in cancer treatment because it also supresses the immune system, leaving patients with dangerously low levels of white blood cells.

And while docetaxel is used to treat many cancers, particularly breast, prostate, stomach, head and neck and some lung cancers, its toxicity can also lead to serious side effects for patients whose tumours are chemo-resistant.

Because the nanoparticles developed by the UEA team can deliver the drugs directly to the tumour site, these risks are vastly reduced. In addition, the targeted approach means less of the drug is needed to kill off the cancer cells.

"So far nobody has been able to find an effective way of using fingolimod in cancer patients because it's so toxic in the blood," explains lead researcher, Dr Dmitry Pshezhetskiy from the Norwich Medical School at UEA.

"We've found a way to use it that solves the toxicity problem, enabling these two drugs to be used in a highly targeted and powerful combination."

The UEA researchers worked with Precision NanoSystems' Formulation Solutions Team who used their NanoAssemblr™ technology to investigate if it was possible to synthesise the different components of the therapy at an industrial scale.

Following successful results on industrial scale production, and a published international patent application, the UEA team is now looking for industrial partners and licensees to move the research towards a phase one clinical trial.

Also included within the nanoparticle package are molecules that will show up on an MRI scan, enabling clinicians to monitor the spread of the particles through the body.

The team has already carried out trials in mice that show the therapy is effective in reducing breast and prostate tumours. These results were published in 2017.

"Significantly, all the components used in the therapy are already cleared for clinical use in Europe and the United States," says Dr Pshezhetskiy. "This paves the way for the next stage of the research, where we'll be preparing the therapy for patient trials."

###

Media Contact

Lisa Horton
[email protected]
44-160-359-3496
@uniofeastanglia

http://comm.uea.ac.uk/press

https://www.uea.ac.uk/about/-/nanoparticle-therapy-could-deliver-double-blow-to-cancer

Share12Tweet8Share2ShareShareShare2

Related Posts

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.