• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

This small molecule could hold the key to promising HIV treatments

Bioengineer by Bioengineer
August 9, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – New research provides details of how the structure of the HIV-1 virus is assembled, findings that offer potential new targets for treatment.

The study, authored by a multi-institutional team led by Cornell University researchers, was published in the journal Nature. It reports that a small molecule called IP6 plays key roles in the immature development of the virus — which occurs within an infected cell — and in the mature development of the virus, which occurs after the virus buds out of the cell membrane and cleaves from the cell.

"This small molecule acts in two different assembly steps in the pathway," said Robert Dick, a postdoctoral researcher and the paper's first author. Dick works in the lab of Volker Vogt, professor in the Department of Molecular Biology and Genetics and the paper's senior author.

The findings open the door to possible new therapies. One option is for researchers to develop or identify compounds that are similar to IP6 and could bind to the same sites as IP6, thereby blocking it and preventing the virus from maturing.

"A cell can make millions of virus particles, but if they don't go through the maturation process, they are not infectious," Dick said.

###

Co-authors included teams of researchers from the University of Delaware; the European Molecular Biology Laboratory in Heidelberg, Germany; the Institute of Science and Technology in Klosterneuburg, Austria; and the University of Missouri.

This work was supported by the National Institutes of Health, the National Science Foundation and the German Research Foundation.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Media Contact

Jeff Tyson
[email protected]
607-793-5769
@cornell

http://pressoffice.cornell.edu

http://news.cornell.edu/stories/2018/08/details-hiv-1-structure-open-door-potential-therapies

Related Journal Article

http://dx.doi.org/10.1038/s41586-018-0396-4

Share12Tweet8Share2ShareShareShare2

Related Posts

Bacterial Resistance to Heavy Metals and Chromium Reduction

Bacterial Resistance to Heavy Metals and Chromium Reduction

September 18, 2025
Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bacterial Resistance to Heavy Metals and Chromium Reduction

Durable Perovskite Cells via Toughened Monolayers

Vitamins’ Role and Mechanisms in Obesity Control

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.