• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mission: Possible — mapping dangerous terrain

Bioengineer by Bioengineer
August 8, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ensuring military forces have up-to-date information about a potentially hostile region offers obvious advantages, but current methods for doing that – especially along shorelines, where underwater mines and other hazards can pose serious risks – all have drawbacks. It is especially difficult if keeping the technology out of enemy hands is a priority.

Engineers from the University of Houston are addressing the challenge as part of a $1 million project led by Craig Glennie, associate professor of civil engineering and an investigator with the National Center for Airborne Laser Mapping, or NCALM.

The work is part of a larger effort, funded by Office of Naval Research and led by Northeastern University. Megan Robertson, UH associate professor of chemical and biomolecular engineering, and Aaron Becker, UH assistant professor of electrical and computer engineering, are working with Glennie on the project.

One phase involves the design of self-guided "packages," small containers made of a biodegradable material and filled with sensors to map the coastline and sea bottom. Glennie said the goal is for the devices to be about the size of a water bottle and to dissolve upon reaching shore.

The sensors ultimately could have a number of applications, ranging from military and law enforcement to environmental monitoring.

"It's kind of like 'Mission Impossible,' but slightly more discreet. We want them to quickly and quietly dissolve," Becker said.

Another aspect involves developing a system to control a swarm of up to one million drones or other aerial reconnaissance vehicles in a way that appears to be unpredictable, thwarting an opponent's ability to track and target them.

Early versions of the project will involve the use of cameras, sonar and sensors to measure temperature and pressure, said Glennie, whose work with NCALM involves mapping with unmanned aerial vehicles and using lasers for mapping through shallow water.

"We'll experiment to see what works best," he said, noting that ultimately the researchers want fully biodegradable versions of both the external support structure and the sensors.

To start with, they are experimenting with different materials. Robertson creates biodegradable plastics and other materials in her lab and will focus on determining the best material for the project, from the shell to the electronic components.

"We will investigate various chemical strategies for creating polymers that can quickly disappear under the right conditions," Robertson said.

Becker, who works in swarm robotics and artificial intelligence, will focus on how to deploy the sensors, as well as leading the related project involving drone swarms.

Much current research is focused on drones flying in formation or schooling and flocking behavior. There are times when that makes sense, Becker said, but the predictability can leave the drones vulnerable to attack. He is developing a way to make the flight paths appear random – and therefore, less susceptible to attack – while still achieving the flight goals.

"We will exploit the computational and maneuverability resources of each drone to protect the swarm," he said.

###

Media Contact

Jeannie Kever
[email protected]
713-743-0778
@UH_News

http://www.uh.edu/news-events

http://www.uh.edu/news-events/stories/2018/august-2018/08082018glennie-robotic-swarm.php

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.