• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Drug makes rats less likely to imbibe alcohol

Bioengineer by Bioengineer
August 8, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Alcohol use disorders can have devastating effects on a person's health, relationships and finances. Yet for some, the feeling they get when taking a drink temporarily outweighs these other concerns. Now, researchers have developed a new drug that could dampen alcohol's effects on the brain's "reward system," causing rats to self-administer the beverage less frequently. They report their results in ACS' Journal of Medicinal Chemistry.

Once consumed, alcohol enters the brain and interacts with neurotransmitters and their receptors, including some involved in reward-system pathways. When activated, these pathways can cause feelings of pleasure, relaxation and craving. Although alcohol-treatment drugs that interfere with the reward system exist, these drugs are not very effective and can have serious side effects. To develop a better treatment, Chunyang Jin and colleagues focused their efforts on a protein receptor called GPR88 that is found predominantly in reward-related areas of the brain. Previous research on mice genetically engineered to lack GPR88 showed that these animals seek and consume alcohol more than normal mice. This led the researchers to wonder if a drug that stimulates GPR88 could reduce alcohol cravings. They had previously developed a synthetic small molecule that activates GPR88 in vitro; however, this molecule could not effectively cross the blood-brain barrier.

The researchers tweaked the structure of the compound to make it more likely to enter the brain. They arrived at a molecule called RTI-13951-33 that was potent, selective for GPR88 and could cross the blood-brain barrier. When given RTI-13951-33, non-engineered rats drank less alcohol than before they received the drug. In contrast, the rats gave themselves sugar water at the same frequency with or without the drug. The researchers say they are now studying the molecule in both wild-type mice and those that lack the GPR88 receptor to prove that it is specific for that receptor.

###

The authors acknowledge funding from the National Institute of Mental Health and the National Institute on Alcohol Abuse and Alcoholism.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact

Katie Cottingham
[email protected]
301-775-8455
@ACSpressroom

http://www.acs.org

Share12Tweet8Share2ShareShareShare2

Related Posts

Ancient Insects Thrive in South American Amber Deposit, Revealing a Vibrant Paleoecosystem

Ancient Insects Thrive in South American Amber Deposit, Revealing a Vibrant Paleoecosystem

September 18, 2025
Dogs Without Training Can Understand How Different Toys Work, Even When They Look Unfamiliar

Dogs Without Training Can Understand How Different Toys Work, Even When They Look Unfamiliar

September 18, 2025

Dogs Extend Word Meanings to New Objects by Function Rather Than Appearance, Study Finds

September 18, 2025

Stem Cell Regulators Control G1 Length Gradient

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

IU Scientists Discover Two Protein Targets to Undermine Pancreatic Cancer Defenses

University of Houston Co-Leads $25 Million NIH Grant to Investigate Slowing Childhood Nearsightedness

Robotic Servicing Payload from Naval Research Laboratory Passes Thermal Vacuum Lab Testing, Prepares for Space Mission

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.