• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Drug makes rats less likely to imbibe alcohol

Bioengineer by Bioengineer
August 8, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Alcohol use disorders can have devastating effects on a person's health, relationships and finances. Yet for some, the feeling they get when taking a drink temporarily outweighs these other concerns. Now, researchers have developed a new drug that could dampen alcohol's effects on the brain's "reward system," causing rats to self-administer the beverage less frequently. They report their results in ACS' Journal of Medicinal Chemistry.

Once consumed, alcohol enters the brain and interacts with neurotransmitters and their receptors, including some involved in reward-system pathways. When activated, these pathways can cause feelings of pleasure, relaxation and craving. Although alcohol-treatment drugs that interfere with the reward system exist, these drugs are not very effective and can have serious side effects. To develop a better treatment, Chunyang Jin and colleagues focused their efforts on a protein receptor called GPR88 that is found predominantly in reward-related areas of the brain. Previous research on mice genetically engineered to lack GPR88 showed that these animals seek and consume alcohol more than normal mice. This led the researchers to wonder if a drug that stimulates GPR88 could reduce alcohol cravings. They had previously developed a synthetic small molecule that activates GPR88 in vitro; however, this molecule could not effectively cross the blood-brain barrier.

The researchers tweaked the structure of the compound to make it more likely to enter the brain. They arrived at a molecule called RTI-13951-33 that was potent, selective for GPR88 and could cross the blood-brain barrier. When given RTI-13951-33, non-engineered rats drank less alcohol than before they received the drug. In contrast, the rats gave themselves sugar water at the same frequency with or without the drug. The researchers say they are now studying the molecule in both wild-type mice and those that lack the GPR88 receptor to prove that it is specific for that receptor.

###

The authors acknowledge funding from the National Institute of Mental Health and the National Institute on Alcohol Abuse and Alcoholism.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact

Katie Cottingham
[email protected]
301-775-8455
@ACSpressroom

http://www.acs.org

Share12Tweet8Share2ShareShareShare2

Related Posts

Immune Gene Expression Patterns in Acute Stroke Unveiled

Immune Gene Expression Patterns in Acute Stroke Unveiled

November 12, 2025
Bees Master Simple ‘Morse Code’ for Reading: New Scientific Discovery

Bees Master Simple ‘Morse Code’ for Reading: New Scientific Discovery

November 12, 2025

Sex-Dependent Meat Quality in Xiaoxiang Chickens Uncovered

November 12, 2025

Thyroid Peroxidase Variants as Subclinical Hypothyroidism Markers

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Violence Against Women in North-East Piedmont Emergency Rooms

Transperineal Prostate Biopsy: Safety Without Antibiotics

Early LV Diastolic Function in Congenital Diaphragmatic Hernia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.