• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Designer polymers on demand

Bioengineer by Bioengineer
August 8, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When jewelers create a necklace, they control the order and number of each bead or jewel they use to form a desired pattern. It's been challenging for scientists to do the same thing when designing polymers–until now. In ACS Central Science, researchers report a new method using light and chemical reactions to control how subunits come together to form polymers with precise properties.

Laboratory-made polymers as influential to modern life as TeflonTM, nylon and polyvinyl chloride (known as PVC) are made up of repeating units of just one kind of molecule that collectively give the polymer its unique physical properties. But nature is full of designer polymers like DNA and proteins, which are made up of differing subunits strung together that can encode information or structural features. In previous research, Brett Fors and colleagues had taken steps toward mimicking nature's variety in the lab to create designer polymers using two photocatalysts that worked when either blue or green light was shone on them. The method wasn't very selective, so the researchers set out to optimize the strategy.

The team used blue light to make one type of monomer bind, and a chemical stimulus (an oxidant) to make another type of monomer bind. By toggling between the light or the chemical additive, the researchers could selectively choose which subunit was added to the growing polymer molecule. They showed that they could create different patterns of polymer blocks along the chain, the length of which was dependent on how long the stimulus was applied. The researchers suggest that this approach will improve on-demand control over sequence, structure and architecture for many different polymers.

###

The authors acknowledge funding from the National Science Foundation and the Alfred P. Sloan Foundation.

The paper will be freely available will be available on Aug. 8, 2018 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/full/10.1021/acscentsci.8b00401

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more research news, journalists and public information officers are encouraged to apply for complimentary press registration for the American Chemical Society's 256th National Meeting & Exposition, Aug. 19-23 in Boston.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact

Katie Cottingham
[email protected]
301-775-8455
@ACSpressroom

http://www.acs.org

Share12Tweet7Share2ShareShareShare1

Related Posts

Immune Gene Expression Patterns in Acute Stroke Unveiled

Immune Gene Expression Patterns in Acute Stroke Unveiled

November 12, 2025
Bees Master Simple ‘Morse Code’ for Reading: New Scientific Discovery

Bees Master Simple ‘Morse Code’ for Reading: New Scientific Discovery

November 12, 2025

Sex-Dependent Meat Quality in Xiaoxiang Chickens Uncovered

November 12, 2025

Thyroid Peroxidase Variants as Subclinical Hypothyroidism Markers

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Violence Against Women in North-East Piedmont Emergency Rooms

Transperineal Prostate Biopsy: Safety Without Antibiotics

Early LV Diastolic Function in Congenital Diaphragmatic Hernia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.