• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New research pinpoints pathways Ebola virus uses to enter cells

Bioengineer by Bioengineer
August 8, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Texas Biomedical Research Institute

San Antonio, TX (August 8, 2018) – A new study at Texas Biomedical Research Institute is shedding light on the role of specific proteins that trigger a mechanism allowing Ebola virus to enter cells to establish replication. The work, published in a supplement to The Journal of Infectious Diseases, was led by Staff Scientist Olena Shtanko, Ph.D., in Texas Biomed's Biosafety Level 4 laboratory. The BSL4 is a high-containment facility that houses research on diseases for which there are no approved vaccines or cures.

The new outbreak of the deadly Ebola virus declared just last week in eastern Democratic Republic of Congo is believed to have claimed more than 30 victims so far, highlighting the continued urgency to find a way to stop the pathogen from killing the people it infects.

The cellular pathway under study is called autophagy, a word that literally means "self-eating." This ancient mechanism is switched on by cells to destroy invading foreign material or consume its own organelles and protein complexes in order to recycle nutrients and survive. Autophagy generally takes place inside the cell. Conducting in vitro work using live Ebola virus, Dr. Shtanko found that, surprisingly, this mechanism was clearly active near the surface of the cells and plays an essential role in facilitating virus uptake.

Ebola virus invades cells though macropinocytosis, a poorly understood process in which the cell surface remodels to form membrane extensions around virions (virus particles), eventually closing to bring them into the interior of the cell. "We were stunned to find that Ebola virus is using autophagy regulators right at the surface of the cell," Shtanko said. "Knowing that these mechanisms work together, we can start finding ways to regulate them."

The interplay between these two cellular processes could have implications for treatment of health conditions other than viruses. Shtanko believes that regulation of the autophagy proteins with a drug could help combat complex diseases where macropinocytosis is dysregulated such as in cancer and certain neurodegenerative disorders, including Alzheimer's.

"The work is a great example of serendipity," said Scientist Rob Davey, a co-author on the study. "Few would have thought that working on Ebola virus would reveal something truly new about how the cell works."

###

This research was funded in part by the National Institute of Allergy and Infectious Diseases (grant R01AI063513), the Defense Threat Reduction Agency (grant HDTRA1-12-1-0002), and the Douglass and Ewing Halsell Foundations.

Texas Biomed is one of the world's leading independent biomedical research institutions dedicated to advancing health worldwide through innovative biomedical research. Texas Biomed partners with hundreds of researchers and institutions around the world to develop diagnostics, therapeutics and vaccines against pathogens causing AIDS, hepatitis, tuberculosis, hemorrhagic fevers and parasitic diseases responsible for malaria and schistosomiasis. The Institute also has programs in the genetics of cardiovascular disease, diabetes, obesity, psychiatric disorders and other diseases. For more information on Texas Biomed, go to http://www.TxBiomed.org.

Media Contact

Wendy Rigby
[email protected]
210-258-9527
@txbiomed

Home

Original Source

https://www.txbiomed.org/news-press/news-releases/new-research-pinpoints-pathways-ebola-virus-uses-to-enter-cells/ http://dx.doi.org/10.1093/infdis/jiy294

Share13Tweet8Share2ShareShareShare2

Related Posts

Immune Gene Expression Patterns in Acute Stroke Unveiled

Immune Gene Expression Patterns in Acute Stroke Unveiled

November 12, 2025
Bees Master Simple ‘Morse Code’ for Reading: New Scientific Discovery

Bees Master Simple ‘Morse Code’ for Reading: New Scientific Discovery

November 12, 2025

Sex-Dependent Meat Quality in Xiaoxiang Chickens Uncovered

November 12, 2025

Thyroid Peroxidase Variants as Subclinical Hypothyroidism Markers

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Violence Against Women in North-East Piedmont Emergency Rooms

Transperineal Prostate Biopsy: Safety Without Antibiotics

Early LV Diastolic Function in Congenital Diaphragmatic Hernia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.