• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Each tropical tree species specializes in getting the nutrients it needs

Bioengineer by Bioengineer
August 3, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Jorge Aleman, STRI

Trees communicate via a "wood wide web" of roots and microbes in ways that enhance their growth and can reduce carbon dioxide in the atmosphere, mitigating climate change. But no one knows why so many tropical trees team up with bacteria to capture nitrogen from the air when they already grow in nitrogen-rich soils. A super-sized experiment at the Smithsonian Tropical Research Institute (STRI) to address this paradox showed that each species has its own unique nutrient-capture strategies, underscoring the importance of biodiversity for successful reforestation projects.

Tropical soils may be rich in nitrogen, but poor in phosphorus useable by plants. Many tropical tree species–usually in the bean (legume) family–have nodules on their roots formed by bacteria to capture nitrogen gas from the air and convert it into nitrogen useful for growth and carbon storage.

"People speculated that nitrogen-fixing species might channel extra nitrogen into making the phosphatase enzyme to capture phosphorus," said Jefferson Hall, director of the Smithsonian's Panama Canal watershed experiment–the Agua Salud Project. "But the evidence was limited."

Hall and colleagues realized that the landscape-scale experiment designed to find out how tropical trees store carbon, affect the water supply and conserve biodiversity, would be the perfect place ask this question, because, unlike in natural forests, there are enough individuals of each species to be able to generalize about how they behave. The team compared between six and 13 individual trees in each of four nitrogen-fixing and three non-nitrogen fixing species to produce phosphatase.

"I think about trees as individuals, as active decision makers, communicating and exchanging materials, choosing one strategy over another," said Sarah Batterman, first author of this study and associate professor and Natural Environment Research Council Independent research fellow at the University of Leeds, UK. "Overall, nitrogen-fixing trees produced more phosphatase, but non-nitrogen fixers did too, sometimes as much as nitrogen fixers, showing the diversity of strategies out there."

"We were hoping to find evidence for the nutrient trading hypothesis–that nitrogen fixers invest in nitrogen-rich phosphatase enzymes, which would resolve the paradox of why there are more nitrogen-fixing trees in these nitrogen-rich tropical forest soils," Batterman said. "But we didn't find any across-the-board support for this hypothesis. So then we considered the nutrient balance hypothesis–that trees adjust their nutrient-capture strategies to satisfy their needs–fixing more nitrogen in nitrogen-poor soils, making more phosphatase in phosphorus-poor soils. We didn't find across-the-board support for this, either."

"An important finding of this study is that high phosphatase activity is not restricted to nitrogen-fixing trees, but varies markedly among both legumes and non-legume species," said Ben Turner, co-author and director of the STRI Soils Laboratory.

"The exciting thing is that now we can apply what we learned about basic biological processes to reforestation efforts to maximize carbon capture and mitigate climate change," Batterman said. "Now we know which tree species may be better at accessing phosphorus, which may be better at getting nitrogen and, most importantly, that biodiversity is critical for reforestation projects."

The Agua Salud Project, a collaboration between STRI, the Panama Canal Authority and Panama's Ministry of the Environment (MiAmbiente). Native species plantations are part of the Smart Reforesation, BiodiversiTREE and TreeDivNet programs.

"We would especially like to thank supporters of the Agua Salud Project–ForestGEO, the Heising-Simons Foundation, HSBC bank, Stanley Motta, Small World Institute Fund, Smithsonian Institution's Competitive Grants for Science, Smithsonian Institution's Grand Challenges Grants, the Hoch family, the U.S. National Science Foundation, National University of Singapore, STRI and Yale-NUS college–because they believe in narrowing the distance between applied and theoretical research," said Hall. The lead author also received support from Princeton University, a STRI short-term fellowship program and a United Kingdom Natural Environment Research Council grant.

###

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The Institute furthers the understanding of tropical biodiversity and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website. Promo video.

Ref. Batterman, S.A, Hall, J.S., Turner, B.L, et al. 2018. Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecology Letters. https://onlinelibrary.wiley.com/journal/14610248

Media Contact

Beth King
[email protected]
202-633-4700 x28216
@stri_panama

http://www.stri.org

Related Journal Article

http://dx.doi.org/10.1111/ele.13129

Share14Tweet7Share2ShareShareShare1

Related Posts

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025
blank

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

UGA Ecologists Discover Two New Bass Species

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Next-Gen Oncology: Precision Genomics Meets Immuno-Engineering

Prostate-Specific Antigen Testing: Past, Present, Future

Bisabolol: Natural Anticancer Agent with Therapeutic Promise

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.