• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Rethinking ketchup packets: New approach to slippery packaging aims to cut food waste

Bioengineer by Bioengineer
August 3, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Virginia Tech

Almost everyone who eats fast food is familiar with the frustration of trying to squeeze every last drop of ketchup out of the small packets that accompany french fries.

What most consumers don't realize, however, is that food left behind in plastic packaging is not simply a nuisance. It also contributes to the millions of pounds of perfectly edible food that Americans throw out every year. These small, incremental amounts of sticky foods like condiments, dairy products, beverages, and some meat products that remain trapped in their packaging can add up to big numbers over time, even for a single household.

New research from Virginia Tech aims to cut down on that waste – and consumer frustration – with a novel approach to creating super slippery industrial packaging.

The study, which was published in Scientific Reports and has yielded a provisional patent, establishes a method for wicking chemically compatible vegetable oils into the surfaces of common extruded plastics.

Not only will the technique help sticky foods release from their packaging much more easily, but for the first time, it can also be applied to inexpensive and readily available plastics such as polyethylene and polypropylene.

These hydrocarbon-based polymers make up 55 percent of the total demand for plastics in the world today, meaning potential applications for the research stretch far beyond just ketchup packets. They're also among the easiest plastics to recycle.

"Previous SLIPS, or slippery liquid-infused porous surfaces, have been made using silicon- or fluorine-based polymers, which are very expensive," said Ranit Mukherjee, a doctoral student in the Department of Biomedical Engineering and Mechanics within the College of Engineering and the study's lead author. "But we can make our SLIPS out of these hydrocarbon-based polymers, which are widely applicable to everyday packaged products."

First created by Harvard University researchers in 2011, SLIPS are porous surfaces or absorbent polymers that can hold a chemically compatible oil within their surfaces via the process of wicking. These surfaces are not only very slippery, but they're also self-cleaning, self-healing, and more durable than traditional superhydrophobic surfaces.

In order for SLIPS to hold these oils, the surfaces must have some sort of nano- or micro-roughness, which keeps the oil in place by way of surface tension. This roughness can be achieved two ways: the surface material is roughened with a type of applied coating, or the surface material consists of an absorbent polymer. In the latter case, the molecular structure of the material itself exhibits the necessary nano-roughness.

Both techniques have recently gained traction with startups and in limited commercial applications. But current SLIPS that use silicone- and fluorine-based absorbent polymers aren't attractive for industrial applications due to their high cost, while the method of adding roughness to surfaces can likewise be an expensive and complicated process.

"We had two big breakthroughs," said Jonathan Boreyko, an assistant professor of biomedical engineering and mechanics and a study co-author. "Not only are we using these hydrocarbon-based polymers that are cheap and in high demand, but we don't have to add any surface roughness, either. We actually found oils that are naturally compatible with the plastics, so these oils are wicking into the plastic itself, not into a roughness we have to apply."

In addition to minimizing food waste, Boreyko cited other benefits to the improved design, including consumer safety and comfort.

"We're not adding any mystery nanoparticles to the surfaces of these plastics that could make people uncomfortable," he said. "We use natural oils like cottonseed oil, so there are no health concerns whatsoever. There's no fancy recipe required."

While the method has obvious implications for industrial food and product packaging, it could also find widespread use in the pharmaceutical industry. The oil-infused plastic surfaces are naturally anti-fouling, meaning they resist bacterial adhesion and growth.

Although the technique may sound very high-tech, it actually finds its roots in the pitcher plant, a carnivorous plant that entices insects to the edge of a deep cavity filled with nectar and digestive enzymes. The leaves that form the plant's eponymous shape have a slippery ring, created by a secreted liquid, around the periphery of the cavity. When the insects move onto this slippery ring, they slide into the belly of the plants.

"This slippery periphery on the pitcher plant actually inspired our SLIPS product," said Mukherjee.

The pitcher plant's innovation – which engineers are now copying with great success – is the combination of a lubricant with some type of surface roughness that can lock that lubricant into place very stably with surface tension.

"We're taking that same concept, but the roughness we're using is just a common attribute of everyday plastics, which means maximal practicality," said Boreyko.

###

This research was funded through an industrial collaboration with Bemis North America. Additional co-authors of the study include Mohammad Habibi, a Virginia Tech mechanical engineering graduate student; Ziad Rashed, an engineering science and mechanics 2018 graduate from Virginia Tech's undergraduate program; and Otacilio Berbert and Xiangke Shi, both of Bemis North America.

Media Contact

Michael Stowe
[email protected]
540-231-2611
@vtnews

http://www.vtnews.vt.edu

Related Journal Article

http://dx.doi.org/10.1038/s41598-018-29823-7

Share14Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.