• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Monash scientists show that highly lethal viruses hijack cellular defences against cancer

Bioengineer by Bioengineer
August 3, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Monash University

Henipaviruses are among the deadliest viruses known to man and have no effective treatments. The viruses include Hendra, lethal to humans and horses, and the Nipah virus, a serious threat in East and Southeast Asia. They are on the World Health Organization Blueprint list of priority diseases needing urgent research and development action.

Now Monash University's Biomedicine Discovery Institute (BDI) researchers have identified a new mechanism used by Henipaviruses in infection, and potential new targets for antivirals to treat them. Their findings may also apply to other dangerous viruses.

The research was published today in Nature Communications.

A collaboration of scientists, led by Monash BDI's Dr Gregory Moseley, found that Henipaviruses hijack a mechanism used by cells to counter DNA damage and prevent harmful mutations, important in diseases such as cancer.

Dr Moseley said it was already known that the viruses send a particular protein into a key part of a cell's nucleus called the nucleolus, but it wasn't known why it did this.

He said the researchers showed that this protein interacted with a cell protein that is an important part of the DNA-damage response machinery, called 'Treacle'. This inhibited Treacle function, which appears to enhance henipavirus production.

(Treacle is, incidentally, involved in a craniofacial disorder called Treacher Collins syndrome, aired in the popular US movie Wonder in 2017.)

"What the virus seems to be doing is imitating part of the DNA damage response," Dr Moseley said.

"It is using a mechanism your cells have to protect you against things like ageing and mutations that lead to cancer. This appears to make the cell a better place for the virus to prosper," he said.

According to Dr Moseley, it is possible that blocking the virus from doing this may lead to the development of new anti-viral therapies.

Both Hendra and Nipah, which spread from bats to other animals and humans, emerged in the 1990s; Hendra in an outbreak in Brisbane in 1994 and Nipah in Malaysia in 1998. The viruses, which share outcomes including inflammation of the brain and severe respiratory symptoms, have since caused multiple outbreaks of disease. Nipah has killed several hundred people, including at least 17 people in the Indian state of Kerala in June.

"Nipah is not so important in Australia but it's the one people are concerned about internationally," Dr Moseley said.

"Like Ebola, if you get a really big outbreak and it's not containable, it could be disastrous," he said.

He said the study's findings add insights into how viruses behave more generally.

"We identified a new way that viruses change the cell, by using the very same machinery that the cell normally uses to protect itself from diseases like cancer," he said.

"This seems to be heading towards exciting possibilities about what viruses might be doing," joint first author, Dr Stephen Rawlinson said.

"We are now trying to work out exactly how changing the DNA damage response through Treacle is useful to this and other dangerous viruses," he said.

###

PhD student Tianyue Zhao was the other first co-author.

The multidisciplinary collaboration working on the paper included scientists from Monash University's Department of Microbiology, physical chemists using a super-resolution microscope in the Monash University School of Chemistry, the CSIRO AAHL high biocontainment facility, and the University of Melbourne.

The research was supported by the Australian Research Council and the Australian National Health and Medical Research Council.

Read the full paper in Nature Communications titled Viral regulation of host cell biology by hijacking of the nucleolar DNA-damage response.

About the Monash Biomedicine Discovery Institute

Committed to making the discoveries that will relieve the future burden of disease, the newly established Monash Biomedicine Discovery Institute at Monash University brings together more than 120 internationally-renowned research teams. Our researchers are supported by world-class technology and infrastructure, and partner with industry, clinicians and researchers internationally to enhance lives through discovery.

Media Contact

Grace Williams
[email protected]
61-399-059-597
@MonashUni

http://www.monash.edu.au

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-05354-7

Share15Tweet8Share2ShareShareShare2

Related Posts

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.