• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The new tree of life of freshwater macroinvertebrates in the European continent

Bioengineer by Bioengineer
August 3, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Núria Bonada (IRBio-UB)

A study from the Faculty of Biology and the Biodiversity Research Institute of the University of Barcelona (IRBio-UB) analysed how water macroinvertebrate species, such as beetles, mosquitos and dragonflies, evolved and diversified since their beginnings. With the analysis of the ecological features of about 6,600 European species, researchers rebuilt the functional space they occupy.

At the same time, they used DNA sequencing to rebuild the tree of life of aquatic macroinvertebrates -evolutionary and phylogenic relation between species- to estimate when they first appeared and their evolution. Results prove previous studies right, which suggested the number of species of each lineage does not depend on the evolutionary time. This study concludes that oldest lineages have more functional diversity -they can do more things and live in more habitats- than younger ones, whose functional diversity is conditioned by oldest lineages which colonized that habitat previously.

The new study has been selected as the article of the month (July) in the journal Ecography. Its first author is the ecologist Cesc Múrria (IRBio-UB) and is led by Professor Núria Bonada (IRBio-UB), head of the research group Freshwater Ecology, Hydrology and Management (FEHM) of the UB. Other participating experts are Anna Papadopoulou (Doñana Biological Station, CSIC), Sylvain Dolédec (University of Lyon, France), and Alfried Vogler (Natural History Museum – Imperial College London, United Kingdom).

Age of lineage and functional diversity

Macroecology is the field of ecology that studies global patterns in biodiversity, such as the decrease of richness of species ranging from tropical areas to the poles, or how this variety gets reduced while the elevation of a mountain rises. In this study, researchers analysed the tree of life of European aquatic macroinvertebrates to determine the time these colonized water ecosystems out of terrestrial or marine ancestors. For instance, it is well established that lineages such as dragonflies colonized continental freshwaters before others, such as beetles or mosquitoes. The next step was to relate the age of lineage to the functional diversity they currently have. "To understand biodiversity global patterns and the processes that created it, it is important to know what these species do -breathe, eat, breed- and where they live -elevation, pH, temperature, amount of oxygen and organic matter of the habitat-, which is known as functional diversity", says Cesc Múrria, member of the Department of Evolutionary Biology, Ecology and Environmental Sciences and FEHM.

Youngest lineages are found in less used places

To relate the evolutionary age and functional diversity, researchers gathered ecological data from about 6,600 species of aquatic macroinvertebrates published in previous studies. Results prove the hypothesis according to which oldest lineages would have a larger functional diversity than young ones, but it also shows how this evolution occurs. "Our results show that young lineages have a functional space which was not used before by other lineages, such as salty environments where we cannot find old lineages. This diversification would occur due older lineages colonizing continental waters with no competitors to limit the functional space. Therefore, as other lineages appeared and occupied functional space, the new ones would evolve to use ecological spaces which were not used before, and they would do fewer things and live in particular habitats", says Cesc Múrria.

A pioneer research in evolutionary studies

This research study is one of the first ones in the field of evolution which determines how lineages in a new habitat can condition the functional diversity of lineages that will colonize the habitat later. "We offer a new perspective for the evolutionary studies that have to consider the ecology of species and not only the amount of species within different lineages. Although it seems something obvious, since the origin of species depends on what the species do, this ecological and evolutionary view is rare in studies that analyse diversity patterns at a big time and space scale. This involvement goes further than the study of aquatic organisms and it can be applied to the whole biota", adds Cesc Múrria.

"The new study is a step forward to a better understanding of the evolutionary and ecological history of rivers, since the study mixes three research fields that have been worked on separately: phylogeny, functional ecology and evolution", conclude the researchers.

###

Media Contact

Rosa Martínez
[email protected]
0034-934-031-335

http://www.ub.edu

Original Source

https://onlinelibrary.wiley.com/doi/10.1111/ecog.02886 http://dx.doi.org/10.1111/ecog.02886

Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025
blank

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

UGA Ecologists Discover Two New Bass Species

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Next-Gen Oncology: Precision Genomics Meets Immuno-Engineering

Prostate-Specific Antigen Testing: Past, Present, Future

Bisabolol: Natural Anticancer Agent with Therapeutic Promise

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.