• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Wearable devices: Useful medical insights or just more data?

Bioengineer by Bioengineer
August 2, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Wearable devices are increasingly bought to track and measure health and sports performance: from the number of steps walked each day to a person's metabolic efficiency, from the quality of brain function to the quantity of oxygen inhaled while asleep. But the truth is we know very little about how well these sensors and machines work — let alone whether they deliver useful information, according to a new review published in Frontiers in Physiology.

"Despite the fact that we live in an era of 'big data,' we know surprisingly little about the suitability or effectiveness of these devices," says lead author Dr Jonathan Peake of the School of Biomedical Sciences and Institute of Health and Biomedical Innovation at the Queensland University of Technology in Australia. "Only five percent of these devices have been formally validated."

The authors reviewed information on devices used both by everyday people desiring to keep track of their physical and psychological health and by athletes training to achieve certain performance levels. The devices — ranging from so-called wrist trackers to smart garments and body sensors designed to track our body's vital signs and responses to stress and environmental influences — fall into six categories:

  • devices for monitoring hydration status and metabolism
  • devices, garments and mobile applications for monitoring physical and psychological stress
  • wearable devices that provide physical biofeedback (e.g., muscle stimulation, haptic feedback)
  • devices that provide cognitive feedback and training
  • devices and applications for monitoring and promoting sleep
  • devices and applications for evaluating concussion

The authors investigated key issues, such as: what the technology claims to do; whether the technology has been independently validated against some recognized standards; whether the technology is reliable and what, if any, calibration is needed; and finally, whether the item is commercially available or still under development.

The authors say that technology developed for research purposes generally seems to be more credible than devices created purely for commercial reasons.

"What is critical to understand here is that while most of these technologies are not labeled as 'medical devices' per se, their very existence, let alone the accompanying marketing, conveys a sensibility that they can be used to measure a standard of health," says Peake. "There are ethical issues with this assumption that need to be addressed."

For example, self-diagnosis based on self-gathered data could be inconsistent with clinical analysis based on a medical professional's assessment. And just as body mass index charts of the past really only provided general guidelines and didn't take into account a person's genetic predisposition or athletic build, today's technology is similarly limited.

The authors are particularly concerned about those technologies that seek to confirm or correlate whether someone has sustained or recovered from a concussion, whether from sports or military service.

"We have to be very careful here because there is so much variability," says Peake. "The technology could be quite useful, but it can't and should never replace assessment by a trained medical professional."

Speaking generally again now, Peake says it is important to establish whether using wearable devices affects people's knowledge and attitude about their own health and whether paying such close attention to our bodies could in fact create a harmful obsession with personal health, either for individuals using the devices, or for family members. Still, self-monitoring may reveal undiagnosed health problems, said Peake, although population data is more likely to point to false positives.

"What we do know is that we need to start studying these devices and the trends they are creating," says Peake. "This is a booming industry."

In fact, a March 2018 study by P&S Market Research indicates the wearable market is expected to generate $48.2 billion in revenue by 2023. That's a mere five years into the future."

The authors highlight a number of areas for investigation in order to develop reasonable consumer policies around this growing industry. These include how rigorously the device/technology has been evaluated and the strength of evidence that the device/technology actually produces the desired outcomes.

"And I'll add a final question: Is wearing a device that continuously tracks your body's actions, your brain activity, and your metabolic function — then wirelessly transmits that data to either a cloud-based databank or some other storage — safe, for users? Will it help us improve our health?" asked Peake. "We need to ask these questions and research the answers."

###

The review is co-authored by Dr. Peake, who also works at Sport Performance Innovation and Knowledge Excellence, Queensland Academy of Sport in Brisbane, Australia; Dr. Graham Kerr of Movement Neuroscience and Injury Prevention Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; and Dr. John P. Sullivan of Clinical and Sports Consulting Services, Providence, Rhode Island, USA.

The research is part of a special article collection on wearable sensor technology.

Please include a link to the original research article in your reporting: https://www.frontiersin.org/articles/10.3389/fphys.2018.00743/full

  • Reference: the 1983 pop/rock song by The Police, "Every Breath You Take."

    Frontiers is an award-winning Open Science platform and leading open-access scholarly publisher. Our mission is to make high-quality, peer-reviewed research articles rapidly and freely available to everybody in the world, thereby accelerating scientific and technological innovation, societal progress and economic growth. For more information, visit http://www.frontiersin.org and follow @Frontiersin on Twitter.

  • Media Contact

    Emma Duncan
    [email protected]
    @frontiersin

    http://www.frontiersin.org

    http://dx.doi.org/10.3389/fphys.2018.00743

    Share12Tweet8Share2ShareShareShare2

    Related Posts

    Standardized Extract Boosts Immunity in Chemotherapy Mice

    September 20, 2025
    Enhancing Labeo rohita Growth with Trypsin Nanoparticles

    Enhancing Labeo rohita Growth with Trypsin Nanoparticles

    September 20, 2025

    Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

    September 19, 2025

    When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

    September 19, 2025
    Please login to join discussion

    POPULAR NEWS

    • blank

      Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

      156 shares
      Share 62 Tweet 39
    • Physicists Develop Visible Time Crystal for the First Time

      67 shares
      Share 27 Tweet 17
    • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

      49 shares
      Share 20 Tweet 12
    • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

      48 shares
      Share 19 Tweet 12

    About

    We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

    Follow us

    Recent News

    Standardized Extract Boosts Immunity in Chemotherapy Mice

    Reticulocalbin-1: Biomarker and Therapy Target in RCC

    Ag-Doped MnO2 Sea Urchin Structure Boosts Zinc Batteries

    • Contact Us

    Bioengineer.org © Copyright 2023 All Rights Reserved.

    Welcome Back!

    Login to your account below

    Forgotten Password?

    Retrieve your password

    Please enter your username or email address to reset your password.

    Log In
    No Result
    View All Result
    • Homepages
      • Home Page 1
      • Home Page 2
    • News
    • National
    • Business
    • Health
    • Lifestyle
    • Science

    Bioengineer.org © Copyright 2023 All Rights Reserved.