• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Fish reproduction: Two times a lady

Bioengineer by Bioengineer
August 2, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo taken by Takafumi Fujimoto

A DNA probing technique clarifies the mechanism behind clonal reproduction of female dojo loach fish, also providing insight into the ancestral origin of the clonal population.

Hokkaido University researchers have developed a technique that allows them to track chromosomes during egg production in dojo loach Misgurnus anguillicaudatus. The study uncovered how female clones double their chromosomes twice to assure clonal reproduction.

The dojo loach is a bottom-dwelling freshwater fish native to East Asia. The majority are sexually reproducing male and female fish. Their 'somatic' non-reproductive cells contain a full set of 50 chromosomes–25 from each parent–while their reproductive egg and sperm cells contain 25 chromosomes.

However, a population of female clones of the species can be found in Hokkaido Island and other areas of Japan. Unlike the sexually reproducing female population, both their somatic and reproductive eggs contain 50 chromosomes, assuring their clonal reproduction. How the reproductive process leads to 50 chromosomes in egg cells has been unclear.

To better understand this mechanism, a research team including Masamichi Kuroda and Takafumi Fujimoto of Hokkaido University's Graduate School of Fisheries Sciences developed DNA probes to track the chromosomes in dojo loach's somatic and reproductive cells. Previous studies have suggested that the female clone population arose when two genetically distinct groups within the species, called A and B for simplicity, mated. Kuroda and his colleagues developed a fluorescent DNA probe that binds to specific chromosomal regions derived from type B.

According to the results published in Chromosome Research, the fluorescent signals indicated that somatic cells of the female clones have 25 chromosomes derived from type B, providing evidence that their ancestral origin arose when type A and B mated. They then looked into the process of egg production using the DNA probes. In the sexually reproducing dojo loach, reproductive cells divided through the normal process of meiosis, in which a single cell containing a full set of 50 chromosomes produces one egg containing 25 chromosomes. This requires doubling chromosomes once.

In the female clones, the team found that the chromosomal material doubles twice so that when it divides, each results in an egg cell containing a full set of 50 chromosomes. Fish sperm activates these egg cells to start developing embryos without incorporating their genetic material into them.

Moreover, their data suggested that sister chromosomes doubled from the same chromosome make pairs so that recombination between the chromosomes does not affect their clonality. Such recombination normally occurs between paternally-derived and maternally-derived chromosomes.

"This is the first time that 'cytogenetic' evidence has been found for this type of chromosomal duplication in a unisexual, ray-finned fish. Further study could help develop a seedling production that can produce a large population of clone fish with desirable characteristics," says Takafumi Fujimoto.

###

Media Contact

Naoki Namba
81-011-706-2185
@hokkaidouni

https://www.global.hokudai.ac.jp/

Original Source

https://www.global.hokudai.ac.jp/blog/fish-reproduction-two-times-a-lady/ http://dx.doi.org/10.1007/s10577-018-9581-4

Share12Tweet8Share2ShareShareShare2

Related Posts

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.