• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Soil phosphorus availability and lime: More than just pH?

Bioengineer by Bioengineer
August 1, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Andrew Margenot

Plants can't do without phosphorus. But there is often a 'withdrawal limit' on how much phosphorus they can get from the soil. That's because phosphorus in soils is often in forms that plants can't take up. That affects how healthy and productive the plants can be.

One influence on phosphorus availability is the soil's pH level.

If soils are too acidic, phosphorus reacts with iron and aluminum. That makes it unavailable to plants. But if soils are too alkaline, phosphorus reacts with calcium and also becomes inaccessible.

"Phosphorus is most available to plants when soil is at a 'Goldilocks' zone of acidity," says Andrew Margenot. Margenot is a researcher at the University of Illinois at Urbana-Champaign.

There are ways to make more phosphorus available to plants. For example, adding lime (calcium hydroxide) reduces soil acidity. That can unlock the phosphorus that was previously unavailable. This is a common practice. "Liming is a bread-and-butter tool for agriculture," says Margenot.

However, liming can influence other ways by which phosphorus might become available to plants. Enzymes, called phosphatases, are also known to influence the amount of phosphorus available to plants. Margenot's study looked at liming and soil management history to see if it influenced the activity of soil enzymes.

Margenot and his colleagues conducted experiments in western Kenya, a region with acidic, weathered soils.

Researchers added varying amounts of lime to long-term experimental plots. These plots had specific fertilization treatments since 2003: One set of plots had been unfertilized. Another had received cow manure. A third set of plots had mineral nitrogen and phosphorus added.

Twenty-seven days after liming, the researchers measured phosphatase activity. They also measured how much phosphorus was available to plants.

They found no clear relationships between soil acidity levels changed by liming and phosphatase activity.

This was unexpected. "We know that phosphatases are sensitive to soil acidity levels," says Margenot. "Our findings show that it is more complicated than just soil acidity when it comes to these enzymes."

And more surprisingly, changes in phosphatase activities after liming depended on the soil's history. This suggests that the sources of these enzymes (microbes, plant roots) could have responded to different fertilization histories by changing the amount or type of phosphatases secreted.

Furthermore, in all cases, the increases in phosphorus availability were relatively small. "In the soils tested, lime alone was not enough to be meaningful to crops and thus farmers," says Margenot. "Lime needs to be combined with added phosphorus to meet crop needs in these soils."

Margenot is now working to extend this study. With colleagues from the International Center for Tropical Agriculture (CIAT) and the German Society for International Cooperation (GIZ), he'll be studying western Kenyan farms. The goal is to see if using lime at rates realistic for growers will have soil health trade-offs in these weathered soils.

Read more about this research in Soil Science Society of America Journal.

###

Media Contact

Susan Fisk
[email protected]
608-273-8091
@ASA_CSSA_SSSA

http://www.agronomy.org

Related Journal Article

http://dx.doi.org/10.2136/sssaj2017.12.0420

Share12Tweet8Share2ShareShareShare2

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

Revealing Tendon Changes from Rotator Cuff Tears

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.