• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Soil phosphorus availability and lime: More than just pH?

Bioengineer by Bioengineer
August 1, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Andrew Margenot

Plants can't do without phosphorus. But there is often a 'withdrawal limit' on how much phosphorus they can get from the soil. That's because phosphorus in soils is often in forms that plants can't take up. That affects how healthy and productive the plants can be.

One influence on phosphorus availability is the soil's pH level.

If soils are too acidic, phosphorus reacts with iron and aluminum. That makes it unavailable to plants. But if soils are too alkaline, phosphorus reacts with calcium and also becomes inaccessible.

"Phosphorus is most available to plants when soil is at a 'Goldilocks' zone of acidity," says Andrew Margenot. Margenot is a researcher at the University of Illinois at Urbana-Champaign.

There are ways to make more phosphorus available to plants. For example, adding lime (calcium hydroxide) reduces soil acidity. That can unlock the phosphorus that was previously unavailable. This is a common practice. "Liming is a bread-and-butter tool for agriculture," says Margenot.

However, liming can influence other ways by which phosphorus might become available to plants. Enzymes, called phosphatases, are also known to influence the amount of phosphorus available to plants. Margenot's study looked at liming and soil management history to see if it influenced the activity of soil enzymes.

Margenot and his colleagues conducted experiments in western Kenya, a region with acidic, weathered soils.

Researchers added varying amounts of lime to long-term experimental plots. These plots had specific fertilization treatments since 2003: One set of plots had been unfertilized. Another had received cow manure. A third set of plots had mineral nitrogen and phosphorus added.

Twenty-seven days after liming, the researchers measured phosphatase activity. They also measured how much phosphorus was available to plants.

They found no clear relationships between soil acidity levels changed by liming and phosphatase activity.

This was unexpected. "We know that phosphatases are sensitive to soil acidity levels," says Margenot. "Our findings show that it is more complicated than just soil acidity when it comes to these enzymes."

And more surprisingly, changes in phosphatase activities after liming depended on the soil's history. This suggests that the sources of these enzymes (microbes, plant roots) could have responded to different fertilization histories by changing the amount or type of phosphatases secreted.

Furthermore, in all cases, the increases in phosphorus availability were relatively small. "In the soils tested, lime alone was not enough to be meaningful to crops and thus farmers," says Margenot. "Lime needs to be combined with added phosphorus to meet crop needs in these soils."

Margenot is now working to extend this study. With colleagues from the International Center for Tropical Agriculture (CIAT) and the German Society for International Cooperation (GIZ), he'll be studying western Kenyan farms. The goal is to see if using lime at rates realistic for growers will have soil health trade-offs in these weathered soils.

Read more about this research in Soil Science Society of America Journal.

###

Media Contact

Susan Fisk
[email protected]
608-273-8091
@ASA_CSSA_SSSA

http://www.agronomy.org

Related Journal Article

http://dx.doi.org/10.2136/sssaj2017.12.0420

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Impact of miR-4289-Loaded Exosomes on Stem Cells

November 11, 2025
blank

Ovarian Transcriptome Links Inflammation to Poultry Meat Spots

November 11, 2025

Unlocking an 180-Year-Old Mystery: The Link Between Metabolism and Cell Growth

November 11, 2025

The Origin of Motion: Nature’s First Motor from Billions of Years Ago

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Innovative Community Treatments for Eating Disorders

Impact of miR-4289-Loaded Exosomes on Stem Cells

Ovarian Transcriptome Links Inflammation to Poultry Meat Spots

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.