• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Magnetic nanoparticles deliver chemotherapy to difficult-to-reach spinal tumors

Bioengineer by Bioengineer
July 30, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of Illinois at Chicago have demonstrated that magnetic nanoparticles can be used to ferry chemotherapy drugs into the spinal cord to treat hard-to-reach spinal tumors in an animal model. The unique delivery system represents a novel way to target chemotherapy drugs to spinal cancer cells, which are hard to reach because the drugs must cross the blood-brain barrier.

Spinal cord tumors are a challenge to treat because they are difficult to surgically remove due to their proximity to healthy spinal tissue and because chemotherapy drugs must cross the blood-brain barrier in order to reach them. Intramedullary spinal cord tumors account for 8 percent to 10 percent of all spinal cord tumors and are common among children and adolescents. Average survival for patients with these tumors is 15.5 months.

Doxorubicin, a commonly used chemotherapy to treat spinal tumors, is delivered intravenously and affects the whole body with poor penetration to the spine. Radiation therapy is also problematic for these tumors because the radiation often damages healthy nearby spinal tissue and can have devastating effects, including paraplegia.

"Getting chemotherapy drugs to spinal tumors has always been a problem," said Dr. Ankit Mehta, assistant professor of neurosurgery and director of spinal oncology in the UIC College of Medicine and corresponding author on the paper. "But we can precisely guide chemotherapy to cancer cells into the spinal cord using magnetic nanoparticles."

The researchers, whose results are published in the journal Scientific Reports, used a unique rat model with implanted human intramedullary spinal cord tumors to show that magnetic nanoparticles could successfully be used to kill tumor cells.

First, they created nanoparticles made up of tiny, metallic magnets bound to particles of doxorubicin. Next, they implanted a magnet just under the skin covering the spinal vertebrae in the rat models. Then they injected the magnetic nanoparticles into the space around the spinal cord where the tumor was located.

The magnet implanted in close proximity to the tumor guided the nanoparticles to the tumor sites. The researchers were able to show that tumor cells took up the nanoparticles and underwent apoptosis – in other words, they were effectively destroyed. The impact of the nanoparticles on nearby healthy cells was very minimal, Mehta said.

"This proof-of-concept study shows that magnetic nanoparticles are an effective way to deliver chemotherapy to an area of the body that has been difficult to reach with available treatments," he said. "We will continue to investigate the potential of this therapy and hope to enter human trials if it continues to show promise."

###

Pouyan Kheirkhan, Steven Denyer, Abhiraj Bhimani, Gregory Arnone, Darian Esfahani, Tania Aguilar, Jack Zakrzewski, Indu Venugopal, Nazia Habib, Andreas Linninger, and Dr. Fady Charbel of UIC, and Gary Gallia of Johns Hopkins University School of Medicine, are co-authors on the paper.

This research was supported in part by a Young Investigator Research Grant (G3895) from the AO Foundation, North America. Steven Denyer, a third-year medical student, was lead author on the study and receives research support from the Hispanic Center of Excellence at UIC.

Media Contact

Sharon Parmet
[email protected]
312-413-2695
@uicnews

http://www.uic.edu

https://today.uic.edu/magnetic-nanoparticles-deliver-chemotherapy-to-difficult-to-reach-spinal-tumors

Related Journal Article

http://dx.doi.org/10.1038/s41598-018-29736-5

Share13Tweet7Share2ShareShareShare1

Related Posts

Food Delivery and Dietary Guidance Lower Blood Pressure in Black Adults Living in Food Deserts

November 10, 2025

Ten-Year Study Reveals Gambling Treatment Retention Trends

November 10, 2025

NRG1/PDGFC Loop Fuels Breast Cancer Drug Resistance

November 10, 2025

Shugan Xiaozhi Decoction Eases Nonalcoholic Steatohepatitis Through AMPK

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough in AI-Enhanced Olfactory Sensors: Successfully Unveiling the Mechanisms of Odor Discrimination

FDA Awards Fast Track Status to Novel Drug Combination for Colorectal Cancer Treatment

Food Delivery and Dietary Guidance Lower Blood Pressure in Black Adults Living in Food Deserts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.