• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Soundwave-surfing droplets leave no traces

Bioengineer by Bioengineer
July 26, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Duke University

DURHAM, N.C. — Engineers at Duke University have developed a way to manipulate, split and mix droplets of biological fluids by having them surf on acoustic waves in oil. The technology could form the basis of a small-scale, programmable, rewritable biomedical chip that is completely reusable for disparate purposes from on-site diagnostics to laboratory-based research.

The study appears on July 26 in the journal Nature Communications.

Automated fluid handling has driven the development of many scientific fields. Robotic pipetting systems have, for example, revolutionized the preparation of sequencing libraries, clinical diagnostics and large-scale compound screening. While ubiquitous in the modern biomedical research and pharmaceutical industries, these systems are bulky, expensive and do not handle small volumes of liquids well.

Lab-on-a-chip systems have been able to fill this space to some extent, but most are hindered by one major drawback — surface absorption. Because these devices rely on solid surfaces, the samples being transported inevitably leave traces of themselves that can lead to contamination.

"There are a lot of protein-laden fluids and certain reagents that tend to stick to the chips that are handling them," said Tony Jun Huang, the William Bevan Professor of Mechanical Engineering and Materials Science at Duke. "This is especially true of biological samples like undiluted blood, sputum and fecal samples. Our technology is well-suited for processing these difficult samples."

The new lab-on-a-chip platform uses a thin layer of inert, immiscible oil to stop droplets from leaving behind any trace of themselves. Just below the oil, a series of piezoelectric transducers vibrate when electricity is passed through them. Just like the surface of a subwoofer, these vibrations create sound waves in the thin layer of oil above them.

By carefully controlling the sound waves, the researchers create vertical vortexes that form small dimples in the oil to either side of the active transducer. These dimples can hold droplets with volumes ranging from one nanoliter to 100 microliters and pass them along the surface of the oil as the sound waves are modulated and different transducers are activated.

The droplets are effectively surfing on tiny soundwaves.

"Our contactless liquid-handling mechanism inherently eliminates cross-contamination associated with surface adsorption and the need for surface modification," Huang said. "It enables reusable paths for the droplets to be dynamically processed on arbitrary routes without cross-talk between each other, exponentially increasing the allowable number of combinations of reagent inputs on the same device."

Huang next wants to take this proof-of-concept demonstration and create a fully automated lab-on-a-chip platform that can handle complex operations with dozens of droplets simultaneously. He's planning to collaborate with peers at Duke for various applications in biology and medicine.

###

This research was supported by the National Institutes of Health (R01 GM112048, R33 EB019785) and the National Science Foundation CBET-1438126, IDBR-1455658.

"Digital Acoustofluidics: Programmable, Contactless Liquid Handling and Routing via Acoustic Streaming." Steven Zhang, James Lata, Chuyi Chen, John Mai, Feng Guo, Zhenhua Tian, Liqiang Ren, Zhangming Mao, Po-Hsun Huang, Peng Li, Shujie Yang, and Tony Jun Huang. Nature Communications, 2018. DOI: 10.1038/s41467-018-05297-z

Media Contact

Ken Kingery
[email protected]
919-660-8414
@DukeU

http://www.duke.edu

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-05297-z

Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Defect Size and Location on Spinal Fractures

September 20, 2025

Low PDA Shunt Linked to Premature Infant Risks

September 20, 2025

Hydrocortisone Use in Extremely Preterm Infants

September 20, 2025

Revolutionizing Nine Hole Peg Test with Computer Vision

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

Impact of Defect Size and Location on Spinal Fractures

New Metabolic Syndrome Score Validated in Teens

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.