• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

The dark side of antibiotic ciprofloxacin

Bioengineer by Bioengineer
July 25, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Baylor College of Medicine

The use of ciprofloxacin and other antibiotics of the class of fluoroquinolones may be associated with disruption of the normal functions of connective tissue, including tendon rupture, tendonitis and retinal detachment. These observations reported in a number of journals resulted in the drugs currently having a black box warning physicians and patients of the potential deleterious side effects.

These studies also suggested that other types of connective tissues might be involved.

"A natural tissue to worry about is the aorta, a blood vessel that relies heavily on having a sound connective tissue component – called the extracellular matrix – to maintain its integrity," said first author Dr. Scott A. LeMaire, director of research in the division of cardiothoracic surgery, vice-chair for research and professor of surgery and of molecular physiology and biophysics at Baylor College of Medicine.

Two retrospective clinical studies looked at the possible association between fluoroquinolones and cardiovascular problems.

"They found that patients who received fluoroquinolones had a higher risk for aneurysms (formation of balloon-like areas in the aorta that weaken the integrity of the vessel), ruptures or dissections (tears in the wall) than patients who did not receive the antibiotics. This has raised important concerns," LeMaire said.

Although the retrospective clinical studies point at an association between fluoroquinolone antibiotics and increased risk of aortic diseases, they do not prove that the antibiotics cause the problems. To determine whether a cause-effect association exists, LeMaire and his colleagues worked with a mouse model of human aortic aneurysms and dissections (ADD).

Ciprofloxacin increases risk of tears and rupture in mouse aortas

"In our study, mice with normal or moderately stressed aortas received either ciprofloxacin or placebo and after four weeks we looked at their aortas," said senior author Dr. Ying H. Shen, director of the Aortic Diseases Research Laboratory and associate professor of surgery at Baylor College of Medicine.

The results showed that normal, unstressed mice treated with ciprofloxacin did not show significant negative effects on the aorta. In mice with moderately stressed aortas that had received the placebo, 45 percent developed AAD, 24 percent developed aortic dissection and none had rupture. On the other hand, 79 percent of the mice with moderately stressed aortas that received antibiotic developed AAD, 67 percent had aortic dissection, and 15 percent had fatal rupture. These results were similar in males and females.

"Our study suggests that in this model of moderately stressed mouse aortas, ciprofloxacin exposure results in the disease progressing more rapidly and more severely, which is exactly the concern," Shen said.

The researchers then looked deeper into the effects of ciprofloxacin on mouse aortas searching for insights into the antibiotic's mechanism of action. Compared with the aortas from stressed mice treated with the placebo, the aortic tissue of stressed mice treated with the antibiotic showed more destruction and fragmentation of elastic fibers; decreased activity of LOX, a key enzyme involved in stabilizing the extracellular matrix; increased activity of MMP enzymes involved in extracellular matrix degradation; and enhanced activation of cellular pathways that lead to cell death.

Separate laboratory experiments on human aortic smooth muscle cells revealed that sustained ciprofloxacin exposure reduced the expression of LOX while enhancing the expression of MMP and inducing cell death. In these experimental settings, the antibiotic is disrupting the natural processes that maintain the integrity of the extracellular matrix that is essential for normal aortic function.

"Our findings support the concerns raised by previous retrospective clinical studies and suggest that ciprofloxacin and other antibiotics of the same class should be used with caution in patients with aortic dilatation," Shen said.

"If we consider the clinical data and our experimental results that prove causation in a reliable model of AAD, I believe we have enough evidence for changing guidelines on the use of fluoroquinolone antibiotics for people who have an aneurysm or are at risk for getting an aneurysm," LeMaire said. "I am hopeful that these guidelines can be changed in short order."

Read all the details of this study in JAMA Surgery.

###

Other contributors of this work include Lin Zhang, Pingping Ren, Wei Luo, Alon R. Azares, Chen Zhang, Yidan Wang, Chris Guardado and Joseph S. Coselli.

The researchers are affiliated with Baylor College of Medicine, the Texas Heart Institute and Baylor College of Medicine's Cardiovascular Research Institute.

This study was supported by an award from the Roderick D. MacDonald Research Fund at Baylor St. Luke's Medical Center (17RDM004).

Media Contact

Graciela Gutierrez
[email protected]
713-798-4710
@bcmhouston

https://www.bcm.edu/news

Related Journal Article

http://dx.doi.org/10.1001/jamasurg.2018.1804

Share13Tweet8Share2ShareShareShare2

Related Posts

Linking Stigma and Diabetes Control in Adults

September 20, 2025

Designing Dual Inhibitors: Tricyclic Compounds Target AChE/MAO-B

September 20, 2025

Cyclic Stretch Enhances Chondrogenesis in Stem Cells

September 20, 2025

Respect and Healthcare Equity for Transgender Communities

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Spent Coffee Grounds for Cosmetic Innovations

Betaine Reduces Lung Injury by Inhibiting Macrophage Pyroptosis

Formula Use and NEC Risk in Preterm Infants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.