• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Gene study pinpoints superbug link between people and animals

Bioengineer by Bioengineer
July 23, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have shed light on how a major cause of human and animal disease can jump between species, by studying its genes.

The findings reveal fresh insights into how new disease-causing strains of the bacteria – called Staphylococcus aureus – emerge.

Experts say the research could help improve the use of antibiotics and design better strategies for limiting the spread of disease.

S. aureus bacteria usually live harmlessly in our noses. If the bacteria get into a cut, however, they can cause infections that, in rare instances, can be deadly.

Antibiotic resistant strains of the bacteria, such as MRSA, are a major cause of hospital acquired infections.

The bacteria is also a major burden for the agricultural industry as it causes diseases such as mastitis in cows and skeletal infections in broiler chickens.

A team led by the University of Edinburgh's Roslin Institute analysed the entire genetic make-up of more than 800 strains of S. aureus that were isolated from people and animals.

The researchers sought to investigate the evolutionary history of the bacteria and key events that had allowed it to jump between species.

They found that humans were the likely original host for the bacteria. The first strains capable of infecting livestock emerged around the time animals were first domesticated for farming.

Cows have been a source of strains that now cause infections in human populations worldwide, the study found. The researchers say this highlights the importance of disease surveillance in people and animals in order to spot strains that could cause major epidemics.

The analysis revealed that each time the bacteria jumps species, it acquires new genes that enable it to survive in its new host. In some cases, these genes can also confer resistance to commonly used antibiotics.

Genes linked to antibiotic resistance are unevenly distributed among strains that infect humans compared with those that infect animals, the study found. The researchers say this reflects the distinct practices linked to antibiotic usage in medicine and agriculture.

Investigating how the bacteria are affected by genetic changes that occur after it jumps species could reveal opportunities to develop new anti-bacterial therapies, the researchers say.

It could also help to inform better strategies for managing infections to reduce the risk of transmission to people, and slow the emergence of antibiotic resistance.

The study, published in Nature Ecology & Evolution, involved researchers from the Universities of Edinburgh and Cambridge and the Wellcome Sanger Institute.

###

The Roslin Institute receives strategic funding from the Biotechnology and Biological Sciences Research Council.

Professor Ross Fitzgerald, Group Leader at the University of Edinburgh's Roslin Institute and Director of Edinburgh Infectious Disease, said: "This study has been a real collaborative effort between numerous research groups in the UK and beyond. Our findings provide a framework to understand how some bacteria can cause disease in both humans and animals and could ultimately reveal novel therapeutic targets."

Media Contact

Jen Middleton
[email protected]
44-131-650-6514
@edinunimedia

http://www.ed.ac.uk

http://dx.doi.org/10.1038/s41559-018-0617-0

Share12Tweet7Share2ShareShareShare1

Related Posts

U of A and UNM Secure $43.6M NIH Grant to Advance Translational Clinical Research

September 19, 2025

Peace Talks Between Türkiye and the PKK Present a Historic Opportunity for Environmental Restoration

September 19, 2025

Evaluating New Tool for Anorectal Sexual Function

September 19, 2025

Obeticholic Acid Shields Placenta from Cyclophosphamide Damage

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Biochar Discovery Promises Cleaner, Safer Farmland Soils

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

Innovative CuO/SnO₂ Nanocomposites Enhance Photocatalysis and Supercapacitors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.