• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Houseplants could one day monitor home health

Bioengineer by Bioengineer
July 20, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo (inset, right) by Francisco Palacios. Design renderings by Susan G. Stewart and Rana Abudayyeh.

KNOXVILLE, Tenn. – In a perspective published in the July 20 issue of Science, Neal Stewart and his University of Tennessee coauthors explore the future of houseplants as aesthetically pleasing and functional sirens of home health.

The idea is to genetically engineer house plants to serve as subtle alarms that something is amiss in our home and office environments. Stewart, a professor of plant sciences in the UT Herbert College of Agriculture – who also holds the endowed Racheff Chair of Excellence in Plant Molecular Genetics – came up with the idea during conversations with his wife, Susan, and Rana Abudayyeh, an assistant professor in the UT College of Architecture and Design's School of Interior Architecture. Both Susan Stewart and Abudayyeh are coauthors of the article. Susan Stewart recently graduated from the school as a non-traditional, re-entry student, and Abudayyeh was among her professors.

This is not the first time that plants have been proposed as biosensors. The authors point out that to date several environmentally relevant phytosensors have been designed by using biotechnology. In fact, what was once known as genetic engineering has grown into a whole field of study called synthetic biology, which is the design and construction of new biological entities or systems.

Synthetic biology is a valuable tool for agricultural production, allowing farmers to grow plants designed to resist drought or certain pests, and Neal Stewart has authored or coauthored several studies involving the engineering of plants to react to certain conditions, like the presence of too much or too little nitrogen. Such plants "glow" when viewed with specifically designed filters. Once this technology is commercialized, it may allow farmers of the future to adjust their management plans accordingly.

What is new, and which the authors discuss in the Science article, is the concept of applying synthetic biology to houseplants beyond aesthetic reasons, like larger blooms or variegated foliage. "Houseplants are ubiquitous in our home environments," says Neal Stewart. "Through the tools of synthetic biology it's possible for us to engineer houseplants that can serve as architectural design elements that are both pleasing to our senses and that function as early sensors of environmental agents that could harm our health, like mold, radon gas or high concentrations of volatile organic compounds." Stewart explains that plant biosensors could be designed to react to harmful agents in any number of ways, such as gradually changing the color of their foliage or through the use of fluorescence. "They can do a lot more than just sit there and look pretty," he says. "They could alert us to the presence of hazards in our environment."

The authors postulate that dense populations of biosensors would be needed, so architectural design elements like "plant walls" might best serve as environmental monitors while also serving our innate need to connect with nature even while indoors.

"Biophlic design builds on our innate affiliation with nature, so integrating biophlic elements within the interior volume carries rich implications spatially and experientially," says Abudayyeh. "Building responsive capabilities into interior plants is revolutionary. It allows biophlic elements within space to assume a more integral role in the space, actively contributing to the well-being of the occupant holistically."

While the Science article presents the concept, Neal Stewart and Abudayyeh have plans to bring their ideas from the lab to future blueprints and ultimately to our homes, schools, hospitals and offices. Neal Stewart and Abudayyeh have already collaborated on a grant proposal, and they plan to pursue additional projects in the future.

"Our work should result in an interior environment that is more responsive to overall health and well-being of its occupants while continuing to provide the benefits plants bring to people every day," says Abudayyeh. "I'm thrilled that my students will be part of this breakthrough research as they integrate this kind of innovation into designing interior spaces. "This long-term project is a unique and intriguing partnership between two seemingly unrelated disciplines, interior architecture and plant sciences," Abudayyeh continues.

As the authors indicate in the Science article, the potential benefits to society of such collaborative research are enormous.

###

The University of Tennessee Institute of Agriculture celebrates 50 years of excellence in providing Real. Life. Solutions. through teaching, discovery and service. ag.tennessee.edu.

Media Contact

Patricia C McDaniels
[email protected]
615-835-4570
@UTIAg

http://ag.tennessee.edu

Original Source

https://ag.tennessee.edu/news/Pages/NR-2018-07-SciencePerspectiveHouseplants.aspx

Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.