• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chemists characterize the fatal fungus among us

Bioengineer by Bioengineer
July 19, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: LSU

Life-threatening fungal infections affect more than two million people worldwide. Effective antifungal medications are very limited. Until now, one of the major challenges is that the fungal cell wall is poorly understood, which has impeded the development of effective antifungal medications that target the cell wall. However, an LSU chemist has identified for the first time the cell wall structure of one of the most prevalent and deadly fungi, which could usher in a new era of antifungal drug development to help save millions of lives.

LSU Department of Chemistry Assistant Professor Tuo Wang and colleagues have identified the high-resolution architecture of the cell wall of one of the most common fungi, Aspergillus fumigatus. Aspergillus fumigatus is airborne and can be found indoors and outdoors. In people with compromised immune systems, the fungi multiplies at an extraordinary rate. It affects more than 200,000 people annually including a quarter of all leukemia patients, and kills more than half of these patients.

"This is the first time anyone has looked at the whole cell of this fungi in its native state at such high resolution. Our work provides the molecular basis to engineer more effective antifungal drugs," Wang said.

His research was published this week in the journal Nature Communications. The LSU research team includes postdoctoral fellow Xue Kang, graduate students Alex Kirui and Malitha Dickwella Widanage, and undergraduate researcher Adrian Chen.

The scientists identified that Aspergillus fumigatus has a semi-waterproof core comprised of two types of stiff sugar molecules that is bridged by some highly branched sugars and coated by a layer of a sugar-protein mixture that constantly moves and undulates. The scientists pinpointed this structure by analyzing the fungi through dynamic nuclear polarization solid-state nuclear magnetic resonance spectroscopy at the National High Magnetic Field Laboratory in Tallahassee, FL. This method provides an unprecedented sensitivity and resolution to view the packing of molecules in native cells, without perturbation.

Next, Wang and colleagues will test the efficacy of various antifungal drugs against Aspergillus fumigatus in his lab at LSU. Also, they are characterizing other fungi in collaboration with Professor of Pediatrics and Microbiology Ping Wang in the Department of Microbiology, Immunology and Parasitology at the LSU Health Sciences Center in New Orleans.

"I want to share the structure and characterization of underinvestigated complex carbohydrates because they are large, complex and difficult to understand. We are also establishing a method for rapidly screening the drug effects of various fatal fungi and guiding the development of better medicines," said Wang at LSU.

###

Media Contact

Alison Satake
[email protected]
225-578-3870
@LSUResearchNews

http://www.lsu.edu

Original Source

https://www.lsu.edu/mediacenter/news/2018/07/19chem_wang_naturecomms.php http://dx.doi.org/10.1038/s41467-018-05199-0

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.