• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

TGen-led study shows DNA methylation related to liver disease among obese patients

Bioengineer by Bioengineer
July 18, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: TGen

PHOENIX, Ariz. — July 18, 2018 — DNA methylation is a molecular process that helps enable our bodies to repair themselves, fight infection, get rid of environmental toxins, and even to think. But sometimes this process goes awry.

A team of scientists led by the Translational Genomics Research Institute (TGen), an affiliate of City of Hope, has identified how DNA methylation is associated with a condition known as non-alcoholic fatty liver disease (NAFLD), which can lead to liver cirrhosis and death, and is one of the leading indicators for liver transplants.

In one of the most exacting studies of its kind, TGen scientists found evidence that DNA methylation has a role in the initiation of NAFLD-related fibrosis, according to a study published in the journal Clinical Epigenetics.

Obesity and insulin resistance are associated with fat accumulation in the liver, and obesity is a significant risk factor for NAFLD. Using a City of Hope computer algorithm specifically designed for the task, researchers analyzed the biopsied liver tissues of 14 obese patients with advanced fibrosis or cirrhosis of the liver, and 15 obese patients with normal livers.

"Our findings showed statistically significant evidence for differential DNA methylation between fibrotic and normal tissue samples from obese individuals," said Dr. Johanna DiStefano, a TGen Professor and head of the institute's Diabetes and Fibrotic Disease Unit.

Importantly, the study zeroed in on four genes — AQP1, FGFR2, RBP5 and MGMT — that not only were methylated in this study, but also in three previous studies that were similar, but not specifically focused on advanced fibrosis in obese NAFLD patients.

"These genes could represent targets for new therapeutics," said Dr. DiStefano, the study's senior author, who plans to pursue a larger study that would validate the initial findings in this pilot inquiry. "These approaches are yielding new insights into the pathological mechanisms underlying the development of fibrosis and cirrhosis in NAFLD."

Future studies will be needed to determine the extent to which DNA methylation patterns in the liver are represented in other metabolically relevant tissues. Such findings would be critical for the development of non-invasive biomarkers in the creation of an early-warning system for NAFLD, the study concludes.

###

Samples examined in this study were from obese Caucasian female patients enrolled in the Bariatric Surgery Program at the Geisinger Clinic Center for Nutrition and Weight Management, with no history of significant alcohol or drug abuse, and who could be matched by age, sex, body-mass index and type 2 diabetes.

Also contributing to this study were the Geisinger Obesity Institute, and the Lewis Katz School of Medicine at Temple University.

Funding for this study was provided by TGen, and by the National Institutes of Health (NIH).

The study — Differentially methylated loci in NAFLD cirrhosis are associated with key signaling pathways — was published July 13 in the journal Clinical Epigenetics.

About TGen

Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. TGen is focused on helping patients with neurological disorders, cancer, diabetes, and infectious diseases, through cutting edge translational research (the process of rapidly moving research towards patient benefit). TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities literally worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. TGen is affiliated with City of Hope, a world-renowned independent research and cancer and diabetes treatment center: http://www.cityofhope.org. This precision medicine affiliation enables both institutes to complement each other in research and patient care, with City of Hope providing a significant clinical setting to advance scientific discoveries made by TGen. For more information, visit: http://www.tgen.org. Follow TGen on Facebook, LinkedIn and Twitter @TGen.

Media Contact:

Steve Yozwiak
TGen Senior Science Writer
602-343-8704
[email protected]

Media Contact

Steve Yozwiak
[email protected]
602-343-8704

http://www.tgen.org

Original Source

https://www.tgen.org/news/2018/july/18/tgen-finds-dna-link-to-liver-disease/ http://dx.doi.org/10.1186/s13148-018-0525-9

Share12Tweet7Share2ShareShareShare1

Related Posts

Intelligent Robots Transform the Future of Structural Health Monitoring

September 18, 2025

Blue OLED Wearable Patch Infused with Natural Antibacterial Phytochemicals Offers Non-Antibiotic Treatment Against Staphylococcus aureus

September 18, 2025

Sure! Here’s a rewritten version of the headline for a science magazine post: “Thermal Trigger: Unlocking the Science Behind Heat-Activated Mechanisms” Let me know if you want it to be more technical or more catchy!

September 18, 2025

Stabilizing RNA Thermometer Protects Brain After Hemorrhage

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Precise 1,3-Hydrofunctionalization of Trisubstituted Alkenes

Serum-Derived hsa_circ_101555 Identified as a Diagnostic Biomarker for Non-Hepatocellular Carcinoma Chronic Liver Disease

Intelligent Robots Transform the Future of Structural Health Monitoring

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.