• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New retinal ganglion cell subtypes emerge from single-cell RNA sequencing

Bioengineer by Bioengineer
July 18, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Single-cell sequencing technologies are filling in fine details in the catalog of life. Researchers at the University of Connecticut Health Center (UConn Health) and The Jackson Laboratory (JAX) have identified 40 subtypes of retinal ganglion cells (RGCs) along with the genetic markers and transcription factors that differentiate them.

Thanks to recent advances in droplet-based single-cell RNA sequencing technologies, researchers can now isolate single cells and amplify their genetic material to probe their full complement of RNA. This makes it possible to conduct a detailed census of cells of a given type (e.g., RGCs), identifying subtle molecular differences that constitute subtypes.

RGCs convey visual data from the eye to the brain, and 30 subtypes have previously been identified. Using single-cell RNA sequencing, the research team analyzed 6,225 RGCs, detecting about 5,000 genes expressed per cell, from the left and right eyes of newborn mice. Running the resulting data through clustering algorithms resulted in the cells' classification into 40 subtypes.

Ephraim F. Trakhtenberg, Ph.D., of UConn Health's Department of Neuroscience led the research team, which includes Paul Robson, Ph.D., JAX director of single-cell biology. Their study, published in Nature Communications, provides new precision to a big question in biology: What constitutes a cell type or subtype?

The mammalian central nervous system is highly complex and involves the interaction of many specialized neuronal types and subtypes. The research team selected RGCs precisely because more of its subtypes have been identified to date compared to any other major neuronal cell type, and because other broad classes of retinal cell types (such as photoreceptors) have been studied at a single-cell level. Their goal was to elucidate the molecular differences between, and the markers unique to, RGC subtypes.

Besides identifying new RGC subtypes and their markers, the researchers demonstrate the amount of gene expression variability between cells needed to differentiate them into subtypes, and present a hierarchy from a cell type population to subtypes. The datasets for the study are publicly available through a user-friendly UConn Health web application, RGC Subtypes Gene Browser.

###

Media Contact

Sarah Laskowski
[email protected]
@jacksonlab

http://www.jax.org

http://dx.doi.org/10.1038/s41467-018-05134-3

Share12Tweet7Share2ShareShareShare1

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.