• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New cost-effective instrument measures molecular dynamics on a picosecond timescale

Bioengineer by Bioengineer
July 17, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, D.C., July 17, 2018 — Studying the photochemistry, or chemical results of light, has shown that ultraviolet radiation can set off harmful chemical reactions in the human body and, alternatively, can provide "photo-protection" by dispersing extra energy. To better understand the dynamics of these photochemical processes, a group of scientists irradiated the RNA base uracil with ultraviolet light and documented its behavior on a picosecond timescale.

This week in the Journal of Chemical Physics, from AIP Publishing, the authors describe their work using a new instrument that combines a thermal desorption source with "ultrafast" femtosecond pulses and mass spectrometry detection. The experiment involved exciting uracil molecules and then ionizing them, using a pump-probe technique that shows the molecules' excitation and relaxation response.

"Ultimately, can we tune the dynamics in molecules such that we can maybe drive things toward a preferred photochemical outcome?" said Dave Townsend, an author on the paper. "Some motions are going to be active in driving the dynamics and helping with energy dissipation. Others will just be passive. If you can learn more about that [molecular dynamics], you can start to understand and develop a set of rules for molecular behavior."

Uracil is one of the essential building blocks of RNA. Understanding its energy-dissipating abilities affords insights into mechanistic principles that could one day inform better medicines and optimize photo-dynamic therapies.

"We've shown that you can get good results from a system combining mass spectrometry and thermal desorption, and that, importantly, this enables you to expand the range of molecules to which you can apply cutting-edge spectroscopic methods — bigger, heavier and very nonvolatile systems that are not easy to put into a gas phase," Townsend said.

The researchers also looked for a uracil fragment that is theoretically predicted to be associated with a ring-opening mechanism. The fragment was not revealed during the short time of their investigation, indicating that it might form on longer timescales. Comparing their results with the existing body of work on uracil provided useful benchmarking for their new instrument and showed that thermal desorption can produce results similar to more conventional molecular beam methods.

"We've got a nice demonstration of using this thermal desorption source, and we've shown that for relatively minimal expense, you can set this up and do these kinds of interesting experiments," Townsend said.

###

The article, "Ultraviolet relaxation dynamics in uracil: Time-resolved photoion yield studies using a laser-based thermal desorption source," is authored by Omair Ghafur, Stuart W. Crane, Michal Ryszka, Jana Bockova, Andre Rebelo, Lisa Saalbach, Simone De Camillis, Jason B. Greenwood, Samuel Eden and Dave Townsend. The article will appear in the Journal of Chemical Physics July 17, 2018 (DOI: 10.1063/1.5034419). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5034419.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

Media Contact

Rhys Leahy
[email protected]
301-209-3090
@AIPPhysicsNews

http://www.aip.org

http://dx.doi.org/10.1063/1.5034419

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.