• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers find hidden signals in RNAs that regulate protein synthesis

Bioengineer by Bioengineer
July 16, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have long known that RNA encodes instructions to make proteins. The building blocks that comprise RNA–A, U, C, and Gs–form a blueprint for the protein-making machinery in cells. To make proteins, the machinery latches on RNA at one end and then scans along the RNA until it reaches an AUG string, which is the signal to start translating the genetic code into a protein.

While scanning RNAs for the first AUG, the protein-making machinery frequently encounters sites that diverge from AUG by one building block (such as AUA). On occasion, protein synthesis starts from such alternative start sites. How the protein-making machinery chooses which alternative sites to use has been a mystery.

In a new study published in Nature, scientists describe how the protein-making machinery identifies alternative initiation sites from which to start protein synthesis. "We discovered a mechanism that explains how sites are chosen for translation events that occur in regions that are traditionally considered untranslated and that initiate at non-traditional start sites," said senior author Eckhard Jankowsky, PhD, professor in the Center for RNA Molecular Biology at Case Western Reserve University School of Medicine. "Over the last several years it has become clear that translation in these regions is pervasive, but it is poorly understood how start sites are chosen among the millions of possible start sites."

In the new study, Jankowsky's team leveraged an enzyme that is part of the protein-making machinery–called Ded1p. Mutations in the human version of Ded1p are linked to tumors and cognitive disabilities. Viruses often target the critical enzyme to disrupt protein synthesis inside cells. Jankowsky's team created yeast cells with defective Ded1p. The use of alternative start sites for protein synthesis, like AUA or AAG, dramatically increased in these cells. However, the cells only used a small fraction of possible alternative sites.

The researchers found that chosen alternative start sites were next to regions where the RNA folds back on itself. Ded1p is an RNA helicase–an enzyme that unzips folded RNA structures–but if it is defective it is unable to do so. If left folded, RNA structures stall scanning by the protein-making machinery and cause protein synthesis from an alternative start site nearby. "Our findings reveal a simple mechanism that involves RNA structure and a helicase." Jankowsky said. "If an alternative initiation site is close to RNA structure, it is used to start protein synthesis. So RNA structure and alternative initiation sites together are the signal to start protein production from non-traditional sites."

Since Ded1p is present in all organisms, the findings are likely universally applicable. Protein synthesis starting from alternative translation initiation sites often impacts production of main proteins, encoded after AUG strings in the RNA, and thereby determines protein balance inside cells.

###

Jankowsky's hope is that a deeper understanding of Ded1p will lead to new therapies or medications. "The human version of Ded1p, DDX3X, is involved in many cancers and diseases," he says. Although more research is needed, small molecules that help restore its function could theoretically repair protein processes that have gone haywire during disease.

Jankowsky's team partnered with researchers from the University of California San Francisco and Berkeley, Howard Hughes Medical Institute, and California Institute for Quantitative Biomedical Research for the new study.

Guenther, U-P., et al. "The helicase Ded1p controls use of near-cognate translation initiation codons in 5'UTRs." Nature. 2018 Jul;559(7712):130-134.

This study was supported by the NIH (GM118088 to E.J., GM107331 to D.D.L.) and by a postdoctoral fellowship from the German Research Council (GU 1146/1-1 to U.P.G.).

For more information about Case Western Reserve University School of Medicine, please visit: case.edu/medicine.

Media Contact

Ansley Gogol
[email protected]
216-368-4452
@cwru

http://www.case.edu

http://casemed.case.edu/cwrumed360/news-releases/release.cfm?news_id=1357&news_category=8

Related Journal Article

http://dx.doi.org/10.1038/s41586-018-0258-0

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.