• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New species may arise from rapid mitochondrial evolution

Bioengineer by Bioengineer
July 12, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – Genetic research at Oregon State University has shed new light on how isolated populations of the same species evolve toward reproductive incompatibility and thus become separate species.

Scientists sequenced the entire genome of a Pacific tidepool crustacean, Tigriopus californicus, a model species for differentiation based on geographic separation – an early stage of one species becoming multiple species.

They examined the co-evolution of mitochondrial and nuclear genes. Mitochondria act as a cell's power plant, generating adenosine triphosphate, or ATP – a source of chemical energy.

As in all animals, most of a T. californicus cell's genes are in its nucleus but some are in the mitochondria.

"The mitochondria organelle contains a small chromosome with only 37 genes, but these genes are absolutely essential for metabolism," said the study's corresponding author, Felipe Barreto, assistant professor of integrative biology in OSU's College of Science. "In order for ATP to be produced properly in a cell, a few hundred other genes encoded in the nucleus must interact directly with the 37 mitochondrial genes. Mutations in the mitochondrial genes may cause these interactions to be subpar and thus cause reductions in metabolic performance."

T. californicus populations along the Pacific coast of North America have mitochondrial genes that differ widely from one population to the next – there are lots of mutations relative to each other.

"As a result, hybrid offspring between populations suffer from lowered fitness in the form of lower fecundity, slow development and lower ATP production as determined by several previous experiments," Barreto said.

Barreto and collaborators from the University of California, San Diego, the University of Southern California and the University of North Carolina used molecular statistical models to screen the genomes of eight populations in order to detect which genes might be incompatible between populations.

"Those genes may therefore be candidate genes for understanding how different populations become incompatible and possibly eventually become different species," he said.

###

The National Science Foundation and Oregon State University funded this research.

Findings were published this week in Nature Ecology and Evolution.

Media Contact

Felipe Barreto
[email protected]
@oregonstatenews

http://oregonstate.edu/

http://bit.ly/2L0mGzF

Related Journal Article

http://dx.doi.org/10.1038/s41559-018-0588-1

Share12Tweet8Share2ShareShareShare2

Related Posts

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.