• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Solved protein puzzle opens door to new design for cancer drugs

Bioengineer by Bioengineer
July 12, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – Researchers at Oregon State University have solved a longstanding puzzle concerning the design of molecular motors, paving the way toward new cancer therapies.

Findings were published today in Current Biology.

The research involved kinesins: tiny, protein-based motors that interact with microtubules inside cells. The motors convert chemical energy into mechanical energy to generate the directional movements and forces necessary to sustain life.

Microtubules are microscopic tubular structures that have two distinct ends: a fast-growing plus end and a slow-growing minus ends. Microtubules help make up a cell's skeleton.

Most kinesins only interact with just one microtubule, but a subgroup of kinesins called kinesin-14s preferentially bind to two different microtubules: one with the protein's feet, and one with its tail.

Scientists had known little about what drives that preference, but researchers in the OSU College of Science revealed that some kinesin-14s have a stiff rather than a flexible waist separating the feet from the tail – that's the reason these motor proteins prefer a two-microtubule track.

The findings are important because certain cancer cells depend on kinesin-14 to proliferate, and now there's way to halt those cells: with drugs that make that stiff waist more elastic, thus grinding the molecular motor to a halt and killing the cell.

"Kinesin-14s contribute to the assembly of an oval-shaped superstructure called the spindle," said the study's corresponding author Weihong Qiu, assistant professor of physics at OSU. "The spindle functions to ensure chromosomes are accurately separated between daughter cells during cell division."

Qiu and collaborators at the College of Science, Henan University and Nankai University in China, and the University of Michigan looked at kinesin-14s from two sources: a fungus and a fruit fly.

"We cut open the waist part to insert a flexible polypeptide linker," Qiu said.

The results were dramatic. The fungal kinesin-14 motor changed its direction, moving toward the minus end of the microtubules rather than the plus end, and the fly's kinesin-14 motor shifted from being non-processive – i.e., it would only step one way, then the other – to also being a processive, minus-end-directed motor.

But the ability of the fruit fly kinesin-14 to bind to two microtubules was severely compromised by having a flexible waist rather than a stiff one.

"Nature through evolution came up with a remarkable plan in terms of the design of the motor protein," Qiu said. "Most kinesin-14 motors function inside the spindle and need to interact with two different microtubules rather than one. Our research reveals that to accommodate that functional need, these kinesin-14s have evolved to have a rigid middle piece."

Altering that design via drug intervention would kill cancer cells that rely on kinesin-14 to spread.

"Our results imply a novel therapeutic approach, which is to target the waist region of the motor protein," Qiu said. "If the kinesin-14 motor can bend at the waist like a gymnast, then its ability to interact with two microtubules is lost, and so is its function. Now drugs can be identified that modify the rigidity of the waist region."

###

Collaborators included Pan Wang, Kuo-Fu Tseng, Yuan Gao, Michael Cianfrocco and Lijun Guo.

The National Science Foundation as well as the National Science Foundation Committee of China supported this research.

Media Contact

Weihong Qiu
[email protected]
541-737-4377
@oregonstatenews

http://oregonstate.edu/

http://bit.ly/2ueJj9U

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2018.05.026

Share12Tweet7Share2ShareShareShare1

Related Posts

Unveiling Maladaptive Daydreaming Profiles in Chinese Youth

September 18, 2025

University of Houston Co-Leads $25 Million NIH Grant to Investigate Slowing Childhood Nearsightedness

September 18, 2025

New Study Identifies Top Three Deadliest Risk Factors for Common Liver Disease

September 18, 2025

IU Study Reveals Key Challenges in Identifying Patients’ Social Needs

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Maladaptive Daydreaming Profiles in Chinese Youth

Breakthrough Study Highlights Potential of Combination Therapy to Combat Treatment Resistance in Glioblastoma

NRG Oncology PREDICT-RT Study Completes Enrollment, Evaluates Tailored Concurrent Therapy and Radiation for High-Risk Prostate Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.