• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Invasive plants adapt to new environments, study finds

Bioengineer by Bioengineer
July 12, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: (Credit: Mario Vallejo-Marin)

Invasive plants have the ability to adapt to new environments – and even behave like a native species, according to University of Stirling research.

A study has found that the behaviour of invasive plants changes over time – meaning plants of the same species act differently if they arrive in their new environment at separate times.

Scientists studied the characteristics of monkeyflowers (Mimulus guttatus), which first arrived in the UK from North America 200 years ago. They compared the behaviour of monkeyflowers long-established in Scotland with those introduced recently for the purposes of the experiment.

Significantly, they found that the long-established plants were bigger and produced more flowers and more clones than those recently introduced. In comparison, the study showed that the genes of plants recently introduced are not well-adapted to deal with the UK environment.

Dr Mario Vallejo-Marin, Associate Professor in the Faculty of Natural Sciences, led the work alongside PhD student Pauline Pantoja.

"Our study shows that invasive plants – in this case, the monkeyflower – become increasingly adapted to new environments thanks to natural selection," he explained.

"If we compare monkeyflowers that have been here for the last 200 years with those from North America today, they are completely different plants. It appears that, over time, the plants seem to become natives of their new home.

"In other words, these results suggest that invasive populations of plants are better suited to live in their new home than new arrivals from the native range."

The team created two types of hybrid plants – a UK/North American hybrid and a UK/UK hybrid – and grew them, under identical circumstances, to estimate the impact of natural selection. Over two years, around 1,200 plants were grown in a field plot at Stirling.

"The main differences seem to be that the UK plants can produce both high numbers of flowers and high numbers of clones while the hybrids created from the North American samples can only do either many flowers or many clones but not both," Dr Vallejo-Marin said.

Reflecting on the findings, he added: "The last 500 years have seen a rapidly increasing spread of non-native organisms around the world.

"Our study shows that, in older invasions – more than 200 years old – the newcomers are becoming adapted to their new surroundings through evolution by natural selection.

"As more non-native species come of age, the role of natural selection in the success of non-native species will continue to increase."

Dr Vallejo-Marin is now planning further studies to discover how common the process is – and he believes others may also benefit from the work.

"Understanding how organisms adapt to new environments is key in an era of rapid environmental change," he said. "Our study can also be of relevance to environmental managers dealing with biological invasions."

Natural selection and outbreeding depression suggest adaptive differentiation in the invasive range of a clonal plant is published in the Proceedings of the Royal Society B.

###

Media Contact

Greg Christison
[email protected]
01-786-466-687

http://www.stir.ac.uk

Related Journal Article

http://dx.doi.org/10.1098/rspb.2018.1091

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Hypertensive Disorders Linked to Poor Sleep in Midlife

October 16, 2025
Study Finds Sniffer Dogs Require Broader Access to Explosives for Effective Real-World Testing

Study Finds Sniffer Dogs Require Broader Access to Explosives for Effective Real-World Testing

October 16, 2025

Innovative Approaches to Home-Based Drug Therapy Monitoring

October 16, 2025

Uncovering Key Genes for Histia Rhodope Overwintering

October 16, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1250 shares
    Share 499 Tweet 312
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ANXA2’s Role in Hepatocellular Carcinoma Progression

The Surprising Science Behind Why Deep Sighs Benefit Our Health

Uric Acid Levels and Cardiovascular Risks in Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.