• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Towards winning the war on feral wild rabbits

Bioengineer by Bioengineer
July 10, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research shows how two biological control agents have been effective in reducing the numbers of feral rabbits in Australia. Using data from the largest wild rabbit study in the world, scientists have examined the long-term interaction of myxoma and rabbit haemorrhagic disease viruses.

The study published today in the Journal of Animal Ecology was conducted by an international team led by researchers from the University of Adelaide. It shows that both myxoma (MYXV) and rabbit haemorrhagic disease (RHDV) viruses have worked together to control feral rabbit populations in Australia during the last two decades.

Feral rabbits have been extremely successful in Australia with catastrophic impact on the landscape and agriculture. Due to their breeding habits populations have bounced back following efforts to control them and the impact of introduced viruses has been clearly seen in population fluctuations. However, the way these two viruses affect rabbit populations is less clearly understood until now.

Using more than 20 years of data collected at the rabbit research field site at Turretfield, South Australia and novel modelling approaches, the research team led by Dr Konstans Wells, from the University of Adelaide's Environment Institute, uncovered some surprising results about how the two viruses interact and affect rabbit populations.

"By explicitly modelling the complex way that diseases behave in rabbit populations we found an unexpected result. Rabbits that survive infection with MYXV virus have lower rates of survival than rabbits not yet infected," says Dr. Wells.

"This is important because it confirms that MYXV virus weakens animals so that they have a lower resistance when subsequently exposed to RHDV disease. Our study shows the first evidence that both viruses work in tandem to control rabbit population numbers. It is no longer a case of which disease is a better control agent, because their effectiveness is intrinsically linked."

The team also included fellow researchers Dr Damien Fordham and Dr Nina Schwensow. They explored in detail survival prospects for rabbits either infected by none, one or both of the two viruses.

"The effect of RHDV disease virus on rabbits is enhanced by previous infection with MYXV virus. Survival rates were lowest for rabbits which survived MYXV infection and then were exposed to RHDV disease," says Dr Fordham from the University's Environment Institute.

"The findings suggest a continuous benefit from both viruses and maximum impact on rabbit numbers if they act together."

Dr Schwensow studied how RHDV is dependent on flies to spread it effectively from one host to another.

"The way flies bring the virus into contact with rabbits and how it then spreads through rabbit populations is crucial for its efficiency as a killer agent," says Dr Schwensow who carried out the research while at the University of Adelaide.

"This study shows the importance of understanding the dynamics of myxoma and rabbit haemorrhagic disease viruses for ensuring the continued effectiveness of these weapons in the war against feral wild rabbits, which are still one of the worst pests in Australia," says Dr Wells.

###

Media Contact

Dr. Konstans Wells
[email protected]
60-088-484-646
@UniofAdelaide

http://www.adelaide.edu.au

https://www.adelaide.edu.au/news/news101282.html

Related Journal Article

http://dx.doi.org/10.1111/1365-2656.12871

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.